88 research outputs found

    Machine Learning Aided Static Malware Analysis: A Survey and Tutorial

    Full text link
    Malware analysis and detection techniques have been evolving during the last decade as a reflection to development of different malware techniques to evade network-based and host-based security protections. The fast growth in variety and number of malware species made it very difficult for forensics investigators to provide an on time response. Therefore, Machine Learning (ML) aided malware analysis became a necessity to automate different aspects of static and dynamic malware investigation. We believe that machine learning aided static analysis can be used as a methodological approach in technical Cyber Threats Intelligence (CTI) rather than resource-consuming dynamic malware analysis that has been thoroughly studied before. In this paper, we address this research gap by conducting an in-depth survey of different machine learning methods for classification of static characteristics of 32-bit malicious Portable Executable (PE32) Windows files and develop taxonomy for better understanding of these techniques. Afterwards, we offer a tutorial on how different machine learning techniques can be utilized in extraction and analysis of a variety of static characteristic of PE binaries and evaluate accuracy and practical generalization of these techniques. Finally, the results of experimental study of all the method using common data was given to demonstrate the accuracy and complexity. This paper may serve as a stepping stone for future researchers in cross-disciplinary field of machine learning aided malware forensics.Comment: 37 Page

    Static Malware Detection using Deep Neural Networks on Portable Executables

    Full text link
    There are two main components of malware analysis. One is static malware analysis and the other is dynamic malware analysis. Static malware analysis involves examining the basic structure of the malware executable without executing it, while dynamic malware analysis relies on examining malware behavior after executing it in a controlled environment. Static malware analysis is typically done by modern anti-malware software by using signature-based analysis or heuristic-based analysis. This thesis proposes the use of deep neural networks to learn features from a malware’s portable executable (PE) to minimize the occurrences of false positives when recognizing new malware. We use the EMBER dataset for training our model and compare our results with other known malware datasets. We show that using a simple deep neural network for learning vectorized PE features is not only effective, but is also less resource intensive as compared to conventional heuristic detection methods. Our model achieves an Area Under Curve (AUC) of 99.8% with 98% true positives at 1% false positives on the Receiver Output Characteristics (ROC) curve. We further propose the practical implementation of this model to show that it can potentially compliment or replace conventional anti-malware software

    Neural malware detection

    Get PDF
    At the heart of today’s malware problem lies theoretically infinite diversity created by metamorphism. The majority of conventional machine learning techniques tackle the problem with the assumptions that a sufficiently large number of training samples exist and that the training set is independent and identically distributed. However, the lack of semantic features combined with the models under these wrong assumptions result largely in overfitting with many false positives against real world samples, resulting in systems being left vulnerable to various adversarial attacks. A key observation is that modern malware authors write a script that automatically generates an arbitrarily large number of diverse samples that share similar characteristics in program logic, which is a very cost-effective way to evade detection with minimum effort. Given that many malware campaigns follow this paradigm of economic malware manufacturing model, the samples within a campaign are likely to share coherent semantic characteristics. This opens up a possibility of one-to-many detection. Therefore, it is crucial to capture this non-linear metamorphic pattern unique to the campaign in order to detect these seemingly diverse but identically rooted variants. To address these issues, this dissertation proposes novel deep learning models, including generative static malware outbreak detection model, generative dynamic malware detection model using spatio-temporal isomorphic dynamic features, and instruction cognitive malware detection. A comparative study on metamorphic threats is also conducted as part of the thesis. Generative adversarial autoencoder (AAE) over convolutional network with global average pooling is introduced as a fundamental deep learning framework for malware detection, which captures highly complex non-linear metamorphism through translation invariancy and local variation insensitivity. Generative Adversarial Network (GAN) used as a part of the framework enables oneshot training where semantically isomorphic malware campaigns are identified by a single malware instance sampled from the very initial outbreak. This is a major innovation because, to the best of our knowledge, no approach has been found to this challenging training objective against the malware distribution that consists of a large number of very sparse groups artificially driven by arms race between attackers and defenders. In addition, we propose a novel method that extracts instruction cognitive representation from uninterpreted raw binary executables, which can be used for oneto- many malware detection via one-shot training against frequency spectrum of the Transformer’s encoded latent representation. The method works regardless of the presence of diverse malware variations while remaining resilient to adversarial attacks that mostly use random perturbation against raw binaries. Comprehensive performance analyses including mathematical formulations and experimental evaluations are provided, with the proposed deep learning framework for malware detection exhibiting a superior performance over conventional machine learning methods. The methods proposed in this thesis are applicable to a variety of threat environments here artificially formed sparse distributions arise at the cyber battle fronts.Doctor of Philosoph

    Malgazer: An Automated Malware Classifier With Running Window Entropy and Machine Learning

    Get PDF
    This dissertation explores functional malware classification using running window entropy and machine learning classifiers. This topic was under researched in the prior literature, but the implications are important for malware defense. This dissertation will present six new design science artifacts. The first artifact was a generalized machine learning based malware classifier model. This model was used to categorize and explain the gaps in the prior literature. This artifact was also used to compare the prior literature to the classifiers created in this dissertation, herein referred to as “Malgazer” classifiers. Running window entropy data was required, but the algorithm was too slow to compute at scale. This dissertation presents an optimized version of the algorithm that requires less than 2% of the time of the original algorithm. Next, the classifications for the malware samples were required, but there was no one unified and consistent source for this information. One of the design science artifacts was the method to determine the classifications from publicly available resources. Once the running window entropy data was computed and the functional classifications were collected, the machine learning algorithms were trained at scale so that one individual could complete over 200 computationally intensive experiments for this dissertation. The method to scale the computations was an instantiation design science artifact. The trained classifiers were another design science artifact. Lastly, a web application was developed so that the classifiers could be utilized by those without a programming background. This was the last design science artifact created by this research. Once the classifiers were developed, they were compared to prior literature theoretically and empirically. A malware classification method from prior literature was chosen (referred to herein as “GIST”) for an empirical comparison to the Malgazer classifiers. The best Malgazer classifier produced an accuracy of approximately 95%, which was around 0.76% more accurate than the GIST method on the same data sets. Then, the Malgazer classifier was compared to the prior literature theoretically, based upon the empirical analysis with GIST, and Malgazer performed at least as well as the prior literature. While the data, methods, and source code are open sourced from this research, most prior literature did not provide enough information or data to replicate and verify each method. This prevented a full and true comparison to prior literature, but it did not prevent recommending the Malgazer classifier for some use cases

    REFORM: A framework for malware packer analysis using information theory and statistical methods

    Get PDF
    Malware (malicious software) is a term used to describe computer viruses, Trojan horses, and other pieces of software that are used to attack computer systems. The increasing outbreak of malware in recent years poses a serious security threat to computer networks. Malware writers often obfuscate malware to hinder malware scanners from malicious code detection, i.e., to hide the fact that the software is actually malicious. Packing is the most common obfuscation method used by malware writers. Recently, there has been a dramatic increase in the number of new packers and variants of existing ones. Moreover, packers are employing increasingly sophisticated anti-unpacker tricks and obfuscation methods. Identifying a packer and obtaining a sample of unpacked malware are important to AV (Anti-virus) researchers who work on updating antivirus software to defend against malware, so that they can perform in-depth analysis. However, packer analysis is a technically intense research task, requiring the AV experts' deep knowledge of hardware, operating systems, compilers and programming languages. The significant growth of packers, in both number and complexity, prevents AV researchers from carrying out their daily AV research work efficiently and effectively. This PhD project has investigated the common features of packers and presented a novel, fast yet effective packer analysis framework called REFORM (Reverse Engineering For Obfuscation ReMoval). The system applies various technologies including reverse engineering, compression algorithms and statistical methods to de-obfuscate packers. REFORM is comprised of three major components that solve the problem of automatic packer analysis at three important stages of the packer analysis life cycle, namely packer detection, packer identification and unpacking, respectively: (1) It incorporates a novel randomness test that preserves local detail in the packer. This makes it easy for an AV researcher to distinguish areas of compressed/encrypted data from other code and data. (2) Using the above randomness test, each packer is seen to exhibit a unique pattern in its randomness distribution. The REFORM framework therefore provides an extremely effective packer classification model based on a set of randomness measurements generated from a packed file. Various statistical classifiers have also been integrated in REFORM to achieve even better classification performance. (3) REFORM enables an efficient generic unpacking strategy which uses an ordered address execution histogram to capture the memory after the unpacking loop has executed. We demonstrate REFORM 's capability on speeding up packer detection, identification and unpacking procedures. Such an automatic system is shown in the thesis to be essential to keeping up with the accelerating growth in packed malware
    • …
    corecore