1,708 research outputs found

    Packages for Terahertz Electronics

    Get PDF
    In the last couple of decades, solid-state device technologies, particularly electronic semiconductor devices, have been greatly advanced and investigated for possible adoption in various terahertz (THz) applications, such as imaging, security, and wireless communications. In tandem with these investigations, researchers have been exploring ways to package those THz electronic devices and integrated circuits for practical use. Packages are fundamentally expected to provide a physical housing for devices and integrated circuits (ICs) and reliable signal interconnections from the inside to the outside or vice versa. However, as frequency increases, we face several challenges associated with signal loss, dimensions, and fabrication. This paper provides a broad overview of recent progress in interconnections and packaging technologies dealing with these issues for THz electronics. In particular, emerging concepts based on commercial ceramic technologies, micromachining, and 3-D printing technologies for compact and lightweight packaging in practical applications are highlighted, along with metallic split blocks with rectangular waveguides, which are still considered the most valid and reliable approach.119Ysciescopu

    THz Instruments for Space

    Get PDF
    Terahertz technology has been driven largely by applications in astronomy and space science. For more than three decades cosmochemists, molecular spectroscopists, astrophysicists, and Earth and planetary scientists have used submillimeter-wave or terahertz sensors to identify, catalog and map lightweight gases, atoms and molecules in Earth and planetary atmospheres, in regions of interstellar dust and star formation, and in new and old galaxies, back to the earliest days of the universe, from both ground based and more recently, orbital platforms. The past ten years have witnessed the launch and successful deployment of three satellite instruments with spectral line heterodyne receivers above 300 GHz (SWAS, Odin, and MIRO) and a fourth platform, Aura MLS, that reaches to 2520 GHz, crossing the terahertz threshold from the microwave side for the first time. The former Soviet Union launched the first bolometric detectors for the submillimeter way back in 1974 and operated the first space based submillimeter wave telescope on the Salyut 6 station for four months in 1978. In addition, continuum, Fourier transform and spectrophotometer instruments on IRAS, ISO, COBE, the recent Spitzer Space Telescope and Japan's Akari satellite have all encroached into the submillimeter from the infrared using direct detection bolometers or photoconductors. At least two more major satellites carrying submillimeter wave instruments are nearing completion, Herschel and Planck, and many more are on the drawing boards in international and national space organizations such as NASA, ESA, DLR, CNES, and JAXA. This paper reviews some of the programs that have been proposed, completed and are still envisioned for space applications in the submillimeter and terahertz spectral range

    A 492 GHz cooled Schottky receiver for radio-astronomy

    Get PDF
    We developed a 492 GHz cooled GaAs Schottky receiver driven by a solid state local oscillator with a DSB noise temperature of 550 K measured at the telescope. The receiver-bandwidth is approx. equal to 1.0 GHz. Quasi-optical mirrors focus the sky and local oscillator radiation into the mixer. Stability analysis via the Allan variance method shows that the total system including a 1 GHz bandwidth acousto-optical spectrometer built in Cologne allows integration times up to 100 sec per half switching cycle. We successfully used the receiver at the KOSMA 3 m telescope on Gornergrat (3150m) located in the central Swiss Alps near Zermatt during January-February 1992 for observations of the 492 GHz, (CI) (3)P1 to (3)P0 fine structure line in several galactic sources. These observations confirm that Gornergrat is an excellent winter submillimeter site in accordance with previous predictions based on the atmospheric opacity from KOSMA 345 GHz measurements

    Polarised light stress analysis and laser scatter imaging for non-contact inspection of heat seals in food trays

    Get PDF
    This paper introduces novel non-contact methods for detecting faults in heat seals of food packages. Two alternative imaging technologies are investigated; laser scatter imaging and polarised light stress images. After segmenting the seal area from the rest of the respective image, a classifier is trained to detect faults in different regions of the seal area using features extracted from the pixels in the respective region. A very large set of candidate features, based on statistical information relating to the colour and texture of each region, is first extracted. Then an adaptive boosting algorithm (AdaBoost) is used to automatically select the best features for discriminating faults from non-faults. With this approach, different features can be selected and optimised for the different imaging methods. In experiments we compare the performance of classifiers trained using features extracted from laser scatter images only, polarised light stress images only, and a combination of both image types. The results show that the polarised light and laser scatter classifiers achieved accuracies of 96\% and 90\%, respectively, while the combination of both sensors achieved an accuracy of 95\%. These figures suggest that both systems have potential for commercial development

    Intelligent Packaging Systems: Sensors and Nanosensors to Monitor Food Quality and Safety

    Get PDF
    Indexación: Web of Science y Scopus.The application of nanotechnology in different areas of food packaging is an emerging field that will grow rapidly in the coming years. Advances in food safety have yielded promising results leading to the development of intelligent packaging (IP). By these containers, it is possible to monitor and provide information of the condition of food, packaging, or the environment. This article describes the role of the different concepts of intelligent packaging. It is possible that this new technology could reach enhancing food safety, improving pathogen detection time, and controlling the quality of food and packaging throughout the supply chain.https://www.hindawi.com/journals/js/2016/4046061/cta

    A low noise, high thermal stability, 0.1 K test facility for the Planck HFI bolometers

    Get PDF
    We are developing a facility which will be used to characterize the bolometric detectors for Planck, an ESA mission to investigate the Cosmic Microwave Background. The bolometers operate at 0.1 K, employing neutron-transmutation doped (NTD) Ge thermistors with resistances of several megohms to achieve NEPs~1×10^(–17) W Hz^(–1/2). Characterization of the intrinsic noise of the bolometers at frequencies as low as 0.010 Hz dictates a test apparatus thermal stability of 40 nK Hz^(–1/2) to that frequency. This temperature stability is achieved via a multi-stage isolation and control geometry with high resolution thermometry implemented with NTD Ge thermistors, JFET source followers, and dedicated lock-in amplifiers. The test facility accommodates 24 channels of differential signal readout, for measurement of bolometer V(I) characteristics and intrinsic noise. The test facility also provides for modulated radiation in the submillimeter band incident on the bolometers, for measurement of the optical speed-of-response; this illumination can be reduced below detectable limits without interrupting cryogenic operation. A commercial Oxford Instruments dilution refrigerator provides the cryogenic environment for the test facility

    Programmable photonics : an opportunity for an accessible large-volume PIC ecosystem

    Get PDF
    We look at the opportunities presented by the new concepts of generic programmable photonic integrated circuits (PIC) to deploy photonics on a larger scale. Programmable PICs consist of waveguide meshes of tunable couplers and phase shifters that can be reconfigured in software to define diverse functions and arbitrary connectivity between the input and output ports. Off-the-shelf programmable PICs can dramatically shorten the development time and deployment costs of new photonic products, as they bypass the design-fabrication cycle of a custom PIC. These chips, which actually consist of an entire technology stack of photonics, electronics packaging and software, can potentially be manufactured cheaper and in larger volumes than application-specific PICs. We look into the technology requirements of these generic programmable PICs and discuss the economy of scale. Finally, we make a qualitative analysis of the possible application spaces where generic programmable PICs can play an enabling role, especially to companies who do not have an in-depth background in PIC technology

    Smart Table Based on Metasurface for Wireless Power Transfer

    Full text link
    Metasurfaces have been investigated and its numerous exotic functionalities and the potentials to arbitrarily control of the electromagnetic fields have been extensively explored. However, only limited types of metasurface have finally entered into real products. Here, we introduce a concept of a metasurface-based smart table for wirelessly charging portable devices and report its first prototype. The proposed metasurface can efficiently transform evanescent fields into propagating waves which significantly improves the near field coupling to charge a receiving device arbitrarily placed on its surface wirelessly through magnetic resonance coupling. In this way, power transfer efficiency of 80%\% is experimentally obtained when the receiver is placed at any distances from the transmitter. The proposed concept enables a variety of important applications in the fields of consumer electronics, electric automobiles, implanted medical devices, etc. The further developed metasurface-based smart table may serve as an ultimate 2-dimensional platform and support charging multiple receivers.Comment: 8 pages, 7 figure
    corecore