22 research outputs found

    Two improved methods for testing ADC parametric faults by digital input signals

    Get PDF
    In this paper, two improved methods are presented extending our previous work. The first one improves the results by adjusting the voltage levels of the input pulse wave stimulus. Compared with the sine wave input stimulus, the four-level pulse wave can detect even more faulty cases with the offset faults. The second one improves the results by calculating the similarity of the output spectra between the golden devices and the DUTs. Compared with the previous method [10], it is less sensitive to the jitter and the change of the rise/fall time of the input pulse wave stimulus. In these two methods, a number of golden devices are tested at first to obtain the fault-free range. At last, a signature result is obtained from both methods. It can filter out the faulty devices in a quick way before testing the specific values of the conventional dynamic and static parameters

    The test ability of an adaptive pulse wave for ADC testing

    Get PDF
    In the conventional ADC production test method, a high-quality analogue sine wave is applied to the Analogue-to-Digital Converter (ADC), which is expensive to generate. Nowadays, an increasing number of ADCs are integrated into a system-on-chip (SoC) platform design, which usually contains a digital embedded processor. In such a platform, a digital pulse wave is obviously less expensive to generate than an accurate analogue sine wave. As a result, the usage of a digital pulse wave has been investigated to test ADCs as the test stimulus. In this paper, the ability of a digital adaptive pulse wave for ADC testing is presented via the measurement results. Instead of the conventional FFT analysis, a time-domain analysis is exploited for post-processing, from which a signature result can be obtained. This signature can distinguish between faulty devices and the fault-free devices. It is also used in the machine-learning-based test method to predict the dynamic specifications of the ADC. The experimental results of a 12-bit 80 M/s pipelined ADC are shown to evaluate the sensitivity and accuracy of using a pulse wave to test an ADC

    Design-for-Test of Mixed-Signal Integrated Circuits

    Get PDF

    A built-in self-test technique for high speed analog-to-digital converters

    Get PDF
    Fundação para a Ciência e a Tecnologia (FCT) - PhD grant (SFRH/BD/62568/2009

    A BIST solution for frequency domain characterization of analog circuits

    Get PDF
    This work presents an efficient implementation of a BIST solution for frequency characterization of analog systems. It allows a complete characterization in terms of magnitude and phase, including also harmonic distortion and offset measurements. Signal generation is performed using a modified filter, while response evaluation is based on 1storder ÓÄ modulation and very simple digital processing. The signal generator and the response analyzer have been implemented using the Switched-Capacitor (SC) technique in a standard 0.35ìm-3.3V CMOS technology. Both circuits have been separately validated, and an on-board prototype of the complete test system for frequency characterization has been implemented. Experimental results verify the functionality of the proposed approach, and a dynamic range of [email protected] (1MHz clock) has been demonstrated.Gobierno de España TEC2007-68072/MIC, TSI 020400- 2008-71Catrene European Project 2A105SR

    Built-in-self-test of RF front-end circuitry

    Get PDF
    Fuelled by the ever increasing demand for wireless products and the advent of deep submicron CMOS, RF ICs have become fairly commonplace in the semiconductor market. This has given rise to a new breed of Systems-On-Chip (SOCs) with RF front-ends tightly integrated along with digital, analog and mixed signal circuitry. However, the reliability of the integrated RF front-end continues to be a matter of significant concern and considerable research. A major challenge to the reliability of RF ICs is the fact that their performance is also severely degraded by wide tolerances in on-chip passives and package parasitics, in addition to process related faults. Due to the absence of contact based testing solutions in embedded RF SOCs (because the very act of probing may affect the performance of the RF circuit), coupled with the presence of very few test access nodes, a Built In Self Test approach (BiST) may prove to be the most efficient test scheme. However due to the associated challenges, a comprehensive and low-overhead BiST methodology for on-chip testing of RF ICs has not yet been reported in literature. In the current work, an approach to RF self-test that has hitherto been unexplored both in literature and in the commercial arena is proposed. A sensitive current monitor has been used to extract variations in the supply current drawn by the circuit-under-test (CUT). These variations are then processed in time and frequency domain to develop signatures. The acquired signatures can then be mapped to specific behavioral anomalies and the locations of these anomalies. The CUT is first excited by simple test inputs that can be generated on-chip. The current monitor extracts the corresponding variations in the supply current of the CUT, thereby creating signatures that map to various performance metrics of the circuit. These signatures can then be post-processed by low overhead on-chip circuitry and converted into an accessible form. To be successful in the RF domain any BIST architecture must be minimally invasive, reliable, offer good fault coverage and present low real estate and power overheads. The current-based self-test approach successfully addresses all these concerns. The technique has been applied to RF Low Noise Amplifiers, Mixers and Voltage Controlled Oscillators. The circuitry and post-processing techniques have also been demonstrated in silicon (using the IBM 0.25 micron RF CMOS process). The entire self-test of the RF front-end can be accomplished with a total test time of approximately 30µs, which is several orders of magnitude better than existing commercial test schemes

    Electronics for Sensors

    Get PDF
    The aim of this Special Issue is to explore new advanced solutions in electronic systems and interfaces to be employed in sensors, describing best practices, implementations, and applications. The selected papers in particular concern photomultiplier tubes (PMTs) and silicon photomultipliers (SiPMs) interfaces and applications, techniques for monitoring radiation levels, electronics for biomedical applications, design and applications of time-to-digital converters, interfaces for image sensors, and general-purpose theory and topologies for electronic interfaces

    Rapport annuel 2004-2005

    Get PDF

    Integrated Circuits and Systems for Smart Sensory Applications

    Get PDF
    Connected intelligent sensing reshapes our society by empowering people with increasing new ways of mutual interactions. As integration technologies keep their scaling roadmap, the horizon of sensory applications is rapidly widening, thanks to myriad light-weight low-power or, in same cases even self-powered, smart devices with high-connectivity capabilities. CMOS integrated circuits technology is the best candidate to supply the required smartness and to pioneer these emerging sensory systems. As a result, new challenges are arising around the design of these integrated circuits and systems for sensory applications in terms of low-power edge computing, power management strategies, low-range wireless communications, integration with sensing devices. In this Special Issue recent advances in application-specific integrated circuits (ASIC) and systems for smart sensory applications in the following five emerging topics: (I) dedicated short-range communications transceivers; (II) digital smart sensors, (III) implantable neural interfaces, (IV) Power Management Strategies in wireless sensor nodes and (V) neuromorphic hardware
    corecore