12 research outputs found

    Deciding Conditional Termination

    Full text link
    We address the problem of conditional termination, which is that of defining the set of initial configurations from which a given program always terminates. First we define the dual set, of initial configurations from which a non-terminating execution exists, as the greatest fixpoint of the function that maps a set of states into its pre-image with respect to the transition relation. This definition allows to compute the weakest non-termination precondition if at least one of the following holds: (i) the transition relation is deterministic, (ii) the descending Kleene sequence overapproximating the greatest fixpoint converges in finitely many steps, or (iii) the transition relation is well founded. We show that this is the case for two classes of relations, namely octagonal and finite monoid affine relations. Moreover, since the closed forms of these relations can be defined in Presburger arithmetic, we obtain the decidability of the termination problem for such loops.Comment: 61 pages, 6 figures, 2 table

    Vérification relationnelle pour des programmes avec des données entières

    Get PDF
    Les travaux présentés dans cette thèse sont lies aux problèmes de vérification de l'atteignabilité et de la terminaison de programmes qui manipulent des données entières non-bornées. On décrit une nouvelle méthode de vérification basée sur une technique d'accélération de boucle, qui calcule, de manière exacte, la clôture transitive d'une relation arithmétique. D'abord, on introduit un algorithme d'accélération de boucle qui peut calculer, en quelques secondes, des clôtures transitives pour des relations de l'ordre d'une centaine de variables. Ensuite, on présente une méthode d'analyse de l'atteignabilité, qui manipule des relations entre les variables entières d'un programme, et applique l'accélération pour le calcul des relations entrée-sortie des procédures, de façon modulaire. Une approche alternative pour l'analyse de l'atteignabilité, présentée également dans cette thèse, intègre l'accélération avec l'abstraction par prédicats, afin de traiter le problème de divergence de cette dernière. Ces deux méthodes ont été évaluées de manière pratique, sur un nombre important d'exemples, qui étaient, jusqu'a présent, hors de la portée des outils d'analyse existants. Dernièrement, on a étudié le problème de la terminaison pour certaines classes de boucles de programme, et on a montré la décidabilité pour les relations étudiées. Pour ces classes de relations arithmétiques, on présente un algorithme qui s'exécute en temps au plus polynomial, et qui calcule l'ensemble d'états qui peuvent générer une exécution infinie. Ensuite on a intégré cet algorithme dans une méthode d'analyse de la terminaison pour des programmes qui manipulent des données entières.This work presents novel methods for verification of reachability and termination properties of programs that manipulate unbounded integer data. Most of these methods are based on acceleration techniques which compute transitive closures of program loops. We first present an algorithm that accelerates several classes of integer relations and show that the new method performs up to four orders of magnitude better than the previous ones. On the theoretical side, our framework provides a common solution to the acceleration problem by proving that the considered classes of relations are periodic. Subsequently, we introduce a semi-algorithmic reachability analysis technique that tracks relations between variables of integer programs and applies the proposed acceleration algorithm to compute summaries of procedures in a modular way. Next, we present an alternative approach to reachability analysis that integrates predicate abstraction with our acceleration techniques to increase the likelihood of convergence of the algorithm. We evaluate these algorithms and show that they can handle a number of complex integer programs where previous approaches failed. Finally, we study the termination problem for several classes of program loops and show that it is decidable. Moreover, for some of these classes, we design a polynomial time algorithm that computes the exact set of program configurations from which non-terminating runs exist. We further integrate this algorithm into a semi-algorithmic method that analyzes termination of integer programs, and show that the resulting technique can verify termination properties of several non-trivial integer programs.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    A Calculus for Modular Loop Acceleration

    Get PDF

    A Calculus for Modular Loop Acceleration

    Get PDF
    Loop acceleration can be used to prove safety, reachability, runtime bounds, and (non-)termination of programs operating on integers. To this end, a variety of acceleration techniques has been proposed. However, all of them are monolithic: Either they accelerate a loop successfully or they fail completely. In contrast, we present a calculus that allows for combining acceleration techniques in a modular way and we show how to integrate many existing acceleration techniques into our calculus. Moreover, we propose two novel acceleration techniques that can be incorporated into our calculus seamlessly. An empirical evaluation demonstrates the applicability of our approach

    A Calculus for Modular Loop Acceleration

    Get PDF
    Loop acceleration can be used to prove safety, reachability, runtime bounds, and (non-)termination of programs operating on integers. To this end, a variety of acceleration techniques has been proposed. However, all of them are monolithic: Either they accelerate a loop successfully or they fail completely. In contrast, we present a calculus that allows for combining acceleration techniques in a modular way and we show how to integrate many existing acceleration techniques into our calculus. Moreover, we propose two novel acceleration techniques that can be incorporated into our calculus seamlessly. An empirical evaluation demonstrates the applicability of our approach

    PTIME Computation of Transitive Closures of Octagonal Relations

    No full text
    corecore