122 research outputs found

    Algebraic extensions in free groups

    Full text link
    The aim of this paper is to unify the points of view of three recent and independent papers (Ventura 1997, Margolis, Sapir and Weil 2001 and Kapovich and Miasnikov 2002), where similar modern versions of a 1951 theorem of Takahasi were given. We develop a theory of algebraic extensions for free groups, highlighting the analogies and differences with respect to the corresponding classical field-theoretic notions, and we discuss in detail the notion of algebraic closure. We apply that theory to the study and the computation of certain algebraic properties of subgroups (e.g. being malnormal, pure, inert or compressed, being closed in certain profinite topologies) and the corresponding closure operators. We also analyze the closure of a subgroup under the addition of solutions of certain sets of equations.Comment: 35 page

    Rational subsets of Baumslag-Solitar groups

    Get PDF
    We consider the rational subset membership problem for Baumslag-Solitar groups. These groups form a prominent class in the area of algorithmic group theory, and they were recently identified as an obstacle for understanding the rational subsets of GL(2,Q)\text{GL}(2,\mathbb{Q}). We show that rational subset membership for Baumslag-Solitar groups BS(1,q)\text{BS}(1,q) with q≥2q\ge 2 is decidable and PSPACE-complete. To this end, we introduce a word representation of the elements of BS(1,q)\text{BS}(1,q): their pointed expansion (PE), an annotated qq-ary expansion. Seeing subsets of BS(1,q)\text{BS}(1,q) as word languages, this leads to a natural notion of PE-regular subsets of BS(1,q)\text{BS}(1, q): these are the subsets of BS(1,q)\text{BS}(1,q) whose sets of PE are regular languages. Our proof shows that every rational subset of BS(1,q)\text{BS}(1,q) is PE-regular. Since the class of PE-regular subsets of BS(1,q)\text{BS}(1,q) is well-equipped with closure properties, we obtain further applications of these results. Our results imply that (i) emptiness of Boolean combinations of rational subsets is decidable, (ii) membership to each fixed rational subset of BS(1,q)\text{BS}(1,q) is decidable in logarithmic space, and (iii) it is decidable whether a given rational subset is recognizable. In particular, it is decidable whether a given finitely generated subgroup of BS(1,q)\text{BS}(1,q) has finite index.Comment: Long version of paper with same title appearing in ICALP'2

    On the rational subset problem for groups

    Get PDF
    We use language theory to study the rational subset problem for groups and monoids. We show that the decidability of this problem is preserved under graph of groups constructions with finite edge groups. In particular, it passes through free products amalgamated over finite subgroups and HNN extensions with finite associated subgroups. We provide a simple proof of a result of Grunschlag showing that the decidability of this problem is a virtual property. We prove further that the problem is decidable for a direct product of a group G with a monoid M if and only if membership is uniformly decidable for G-automata subsets of M. It follows that a direct product of a free group with any abelian group or commutative monoid has decidable rational subset membership.Comment: 19 page

    Groups with ALOGTIME-Hard Word Problems and PSPACE-Complete Circuit Value Problems

    Get PDF

    Algebraic extensions in free groups

    Get PDF
    The aim of this paper is to unify the points of view of three recent and independent papers (Ventura 1997, Margolis, Sapir and Weil 2001 and Kapovich and Miasnikov 2002), where similar modern versions of a 1951 theorem of Takahasi were given. We develop a theory of algebraic extensions for free groups, highlighting the analogies and differences with respect to the corresponding classical fieldt heoretic notions, and we discuss in detail the notion of algebraic closure. We apply that theory to the study and the computation of certain algebraic properties of subgroups (e.g. being malnormal, pure, inert or compressed, being closed in certain profinite topologies) and the corresponding closure operators. We also analyze the closure of a subgroup under the addition of solutions of certain sets of equations
    • …
    corecore