272 research outputs found

    PSPACE Bounds for Rank-1 Modal Logics

    Get PDF
    For lack of general algorithmic methods that apply to wide classes of logics, establishing a complexity bound for a given modal logic is often a laborious task. The present work is a step towards a general theory of the complexity of modal logics. Our main result is that all rank-1 logics enjoy a shallow model property and thus are, under mild assumptions on the format of their axiomatisation, in PSPACE. This leads to a unified derivation of tight PSPACE-bounds for a number of logics including K, KD, coalition logic, graded modal logic, majority logic, and probabilistic modal logic. Our generic algorithm moreover finds tableau proofs that witness pleasant proof-theoretic properties including a weak subformula property. This generality is made possible by a coalgebraic semantics, which conveniently abstracts from the details of a given model class and thus allows covering a broad range of logics in a uniform way

    Modal logics are coalgebraic

    Get PDF
    Applications of modal logics are abundant in computer science, and a large number of structurally different modal logics have been successfully employed in a diverse spectrum of application contexts. Coalgebraic semantics, on the other hand, provides a uniform and encompassing view on the large variety of specific logics used in particular domains. The coalgebraic approach is generic and compositional: tools and techniques simultaneously apply to a large class of application areas and can moreover be combined in a modular way. In particular, this facilitates a pick-and-choose approach to domain specific formalisms, applicable across the entire scope of application areas, leading to generic software tools that are easier to design, to implement, and to maintain. This paper substantiates the authors' firm belief that the systematic exploitation of the coalgebraic nature of modal logic will not only have impact on the field of modal logic itself but also lead to significant progress in a number of areas within computer science, such as knowledge representation and concurrency/mobility

    Generic Modal Cut Elimination Applied to Conditional Logics

    Full text link
    We develop a general criterion for cut elimination in sequent calculi for propositional modal logics, which rests on absorption of cut, contraction, weakening and inversion by the purely modal part of the rule system. Our criterion applies also to a wide variety of logics outside the realm of normal modal logic. We give extensive example instantiations of our framework to various conditional logics. For these, we obtain fully internalised calculi which are substantially simpler than those known in the literature, along with leaner proofs of cut elimination and complexity. In one case, conditional logic with modus ponens and conditional excluded middle, cut elimination and complexity were explicitly stated as open in the literature

    Named Models in Coalgebraic Hybrid Logic

    Full text link
    Hybrid logic extends modal logic with support for reasoning about individual states, designated by so-called nominals. We study hybrid logic in the broad context of coalgebraic semantics, where Kripke frames are replaced with coalgebras for a given functor, thus covering a wide range of reasoning principles including, e.g., probabilistic, graded, default, or coalitional operators. Specifically, we establish generic criteria for a given coalgebraic hybrid logic to admit named canonical models, with ensuing completeness proofs for pure extensions on the one hand, and for an extended hybrid language with local binding on the other. We instantiate our framework with a number of examples. Notably, we prove completeness of graded hybrid logic with local binding

    Reasoning with global assumptions in arithmetic modal logics

    Get PDF
    We establish a generic upper bound ExpTime for reasoning with global assumptions in coalgebraic modal logics. Unlike earlier results of this kind, we do not require a tractable set of tableau rules for the in- stance logics, so that the result applies to wider classes of logics. Examples are Presburger modal logic, which extends graded modal logic with linear inequalities over numbers of successors, and probabilistic modal logic with polynomial inequalities over probabilities. We establish the theoretical upper bound using a type elimination algorithm. We also provide a global caching algorithm that offers potential for practical reasoning

    The model checking problem for intuitionistic propositional logic with one variable is AC1-complete

    Full text link
    We show that the model checking problem for intuitionistic propositional logic with one variable is complete for logspace-uniform AC1. As basic tool we use the connection between intuitionistic logic and Heyting algebra, and investigate its complexity theoretical aspects. For superintuitionistic logics with one variable, we obtain NC1-completeness for the model checking problem.Comment: A preliminary version of this work was presented at STACS 2011. 19 pages, 3 figure

    On the Complexity of Team Logic and Its Two-Variable Fragment

    Get PDF
    We study the logic FO(~), the extension of first-order logic with team semantics by unrestricted Boolean negation. It was recently shown to be axiomatizable, but otherwise has not yet received much attention in questions of computational complexity. In this paper, we consider its two-variable fragment FO^2(~) and prove that its satisfiability problem is decidable, and in fact complete for the recently introduced non-elementary class TOWER(poly). Moreover, we classify the complexity of model checking of FO(~) with respect to the number of variables and the quantifier rank, and prove a dichotomy between PSPACE- and ATIME-ALT(exp, poly)-complete fragments. For the lower bounds, we propose a translation from modal team logic MTL to FO^2(~) that extends the well-known standard translation from modal logic ML to FO^2. For the upper bounds, we translate FO(~) to fragments of second-order logic with PSPACE-complete and ATIME-ALT(exp, poly)-complete model checking, respectively

    On the Complexity of Team Logic and its Two-Variable Fragment

    Full text link
    We study the logic FO(~), the extension of first-order logic with team semantics by unrestricted Boolean negation. It was recently shown axiomatizable, but otherwise has not yet received much attention in questions of computational complexity. In this paper, we consider its two-variable fragment FO2(~) and prove that its satisfiability problem is decidable, and in fact complete for the recently introduced non-elementary class TOWER(poly). Moreover, we classify the complexity of model checking of FO(~) with respect to the number of variables and the quantifier rank, and prove a dichotomy between PSPACE- and ATIME-ALT(exp, poly)-completeness. To achieve the lower bounds, we propose a translation from modal team logic MTL to FO2(~) that extends the well-known standard translation from modal logic ML to FO2. For the upper bounds, we translate to a fragment of second-order logic
    • …
    corecore