824 research outputs found

    Artificial immune systems based committee machine for classification application

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.A new adaptive learning Artificial Immune System (AIS) based committee machine is developed in this thesis. The new proposed approach efficiently tackles the general problem of clustering high-dimensional data. In addition, it helps on deriving useful decision and results related to other application domains such classification and prediction. Artificial Immune System (AIS) is a branch of computational intelligence field inspired by the biological immune system, and has gained increasing interest among researchers in the development of immune-based models and techniques to solve diverse complex computational or engineering problems. This work presents some applications of AIS techniques to health problems, and a thorough survey of existing AIS models and algorithms. The main focus of this research is devoted to building an ensemble model integrating different AIS techniques (i.e. Artificial Immune Networks, Clonal Selection, and Negative Selection) for classification applications to achieve better classification results. A new AIS-based ensemble architecture with adaptive learning features is proposed by integrating different learning and adaptation techniques to overcome individual limitations and to achieve synergetic effects through the combination of these techniques. Various techniques related to the design and enhancements of the new adaptive learning architecture are studied, including a neuro-fuzzy based detector and an optimizer using particle swarm optimization method to achieve enhanced classification performance. An evaluation study was conducted to show the performance of the new proposed adaptive learning ensemble and to compare it to alternative combining techniques. Several experiments are presented using different medical datasets for the classification problem and findings and outcomes are discussed. The new adaptive learning architecture improves the accuracy of the ensemble. Moreover, there is an improvement over the existing aggregation techniques. The outcomes, assumptions and limitations of the proposed methods with its implications for further research in this area draw this research to its conclusion

    Projection-Based Clustering through Self-Organization and Swarm Intelligence

    Get PDF
    It covers aspects of unsupervised machine learning used for knowledge discovery in data science and introduces a data-driven approach to cluster analysis, the Databionic swarm (DBS). DBS consists of the 3D landscape visualization and clustering of data. The 3D landscape enables 3D printing of high-dimensional data structures. The clustering and number of clusters or an absence of cluster structure are verified by the 3D landscape at a glance. DBS is the first swarm-based technique that shows emergent properties while exploiting concepts of swarm intelligence, self-organization and the Nash equilibrium concept from game theory. It results in the elimination of a global objective function and the setting of parameters. By downloading the R package DBS can be applied to data drawn from diverse research fields and used even by non-professionals in the field of data mining

    A Spatio-Temporal Data Imputation Model for Supporting Analytics at the Edge

    Get PDF
    Current applications developed for the Internet of Things (IoT) usually involve the processing of collected data for delivering analytics and support efficient decision making. The basis for any processing mechanism is data analysis, usually having as an outcome responses in various analytics queries defined by end users or applications. However, as already noted in the respective literature, data analysis cannot be efficient when missing values are present. The research community has already proposed various missing data imputation methods paying more attention of the statistical aspect of the problem. In this paper, we study the problem and propose a method that combines machine learning and a consensus scheme. We focus on the clustering of the IoT devices assuming they observe the same phenomenon and report the collected data to the edge infrastructure. Through a sliding window approach, we try to detect IoT nodes that report similar contextual values to edge nodes and base on them to deliver the replacement value for missing data. We provide the description of our model together with results retrieved by an extensive set of simulations on top of real data. Our aim is to reveal the potentials of the proposed scheme and place it in the respective literature

    Bioinformatics Applications Based On Machine Learning

    Get PDF
    The great advances in information technology (IT) have implications for many sectors, such as bioinformatics, and has considerably increased their possibilities. This book presents a collection of 11 original research papers, all of them related to the application of IT-related techniques within the bioinformatics sector: from new applications created from the adaptation and application of existing techniques to the creation of new methodologies to solve existing problems

    Platelet Diagnostics:A novel liquid biomarker

    Get PDF
    The aim of this thesis is to find a novel liquid biomarker for the detection of cancer and to optimize treatment. The first chapter gives an introduction to the oncology biomarker field and focuses on platelets and their role in cancer. In part 1, we evaluate extracellular vesicles (EVs). EVs are small vesicles released by all types of cells, including tumor cells, into the circulation. They carry protein kinases and can be isolated from plasma. We demonstrate that AKT and ERK kinase protein levels in EVs reflect the cellular expression levels and treatment with kinase inhibitors alters their concentration, depending on the clinical response to the drug. Therefore, EVs may provide a promising biomarker biosource for monitoring of treatment responses. Part 2 starts with reviews describing the function and role of platelets in greater depth. Chapter 3 focusses on thrombocytogenesis and several biological processes in which platelets play a role. Furthermore, the RNA processing machineries harboured by platelets are discussed. Both chapter 3 and 4 evaluate the change platelets undergo after being exposed to tumor and its environment. The exchange of biomolecules with tumor cells results in educated platelets, so-called tumor educated platelets (TEPs). TEPs play a role in several hallmarks of cancer and have the ability to respond to systemic alterations making them an interesting biomarker. In chapter 5 the diagnostic potential of platelets is first discussed. We determine their potential by sequencing the RNA of 283 platelet samples, of which 228 are patients with cancer, and 55 are healthy controls. We reach an accuracy of 96%. Furthermore, we are able to pinpoint the location of the primary tumor with an accuracy of 71%. In part 3, our developed thromboSeq platform is taken to the next level. Several potential confounding factors are taken into account such as age and comorbidity. We show that particle-swarm optimization (PSO)-enhanced algorithms enable efficient selection of RNA biomarker panels. In a validation cohort we apply these algorithms to non-small-cell lung cancer and reach an accuracy of 88% in late stage (n=518) and early-stage 81% accuracy. Finally, in chapter 7 we describe our wet- and dry-lab protocols in detail. This includes platelet RNA isolation, mRNA amplification, and preparation for next-generation sequencing. The dry-lab protocol describes the automated FASTQ file pre-processing to quantified gene counts, quality controls, data normalization and correction, and swarm intelligence-enhanced support vector machine (SVM) algorithm development. Part 4 focuses on central nervous system (CNS) malignancies especially on glioblastoma. Chapter 8 gives an overview of the different liquid biomarkers for diffuse glioma, the most common primary CNS malignancy. In chapter 9 we assess the specificity of the platelet education due to glioblastoma by comparing the RNA profile of TEPs from glioblastoma patients with a neuroinflammatory disease and brain metastasis patients. This results in a detection accuracy of 80%. Secondly, analysis of patients with glioblastoma versus healthy controls in an independent validation series provide a detection accuracy of 95%. Furthermore, we describe the potential value of platelets as a monitoring biomarker for patients with glioma, distinguishing pseudoprogression from real tumor progression. In part 5 thromboSeq is applied to breast cancer diagnostics both as a screening tool in the general population and in a high risk population, BRCA mutated women. In chapter 11 we first apply our technique to an inflammatory condition, multiple sclerosis (MS). Platelet RNA is used as input for the development of a diagnostic MS classifier capable of detecting MS with 80% accuracy in the independent validation series. In the final part we conclude this thesis with a general discussion of the main findings and suggestions for future research

    Projection-Based Clustering through Self-Organization and Swarm Intelligence: Combining Cluster Analysis with the Visualization of High-Dimensional Data

    Get PDF
    Cluster Analysis; Dimensionality Reduction; Swarm Intelligence; Visualization; Unsupervised Machine Learning; Data Science; Knowledge Discovery; 3D Printing; Self-Organization; Emergence; Game Theory; Advanced Analytics; High-Dimensional Data; Multivariate Data; Analysis of Structured Dat

    Fuzzy systems and unsupervised computing: exploration of applications in biology

    Get PDF
    In this thesis we will explore the use of fuzzy systems theory for applications in bioinformatics. The theory of fuzzy systems is concerned with formulating decision problems in data sets that are ill-defined. It supports the transfer from a subjective human classification to a numerical scale. In this manner it affords the testing of hypothesis and separation of the classes in the data. We first formulate problems in terms of a fuzzy system and then develop and test algorithms in terms of their performance with data from the domain of the life-sciences. From the results and the performance, we will learn about the usefulness of fuzzy systems for the field, as well as the applicability to the kind of problems and practicality for the computation itself. Computer Systems, Imagery and Medi
    • …
    corecore