25 research outputs found

    OFSET_mine:an integrated framework for cardiovascular diseases risk prediction based on retinal vascular function

    Get PDF
    As cardiovascular disease (CVD) represents a spectrum of disorders that often manifestfor the first time through an acute life-threatening event, early identification of seemingly healthy subjects with various degrees of risk is a priority.More recently, traditional scores used for early identification of CVD risk are slowly being replaced by more sensitive biomarkers that assess individual, rather than population risks for CVD. Among these, retinal vascular function, as assessed by the retinal vessel analysis method (RVA), has been proven as an accurate reflection of subclinical CVD in groups of participants without overt disease but with certain inherited or acquired risk factors. Furthermore, in order to correctly detect individual risk at an early stage, specialized machine learning methods and featureselection techniques that can cope with the characteristics of the data need to bedevised.The main contribution of this thesis is an integrated framework, OFSET_mine, that combinesnovel machine learning methods to produce a bespoke solution for Cardiovascular Risk Prediction based on RVA data that is also applicable to other medical datasets with similar characteristics. The three identified essential characteristics are 1) imbalanced dataset,2) high dimensionality and 3) overlapping feature ranges with the possibility of acquiring new samples. The thesis proposes FiltADASYN as an oversampling method that deals with imbalance, DD_Rank as a feature selection method that handles high dimensionality, and GCO_mine as a method for individual-based classification, all three integrated within the OFSET_mine framework.The new oversampling method FiltADASYN extends Adaptive Synthetic Oversampling(ADASYN) with an additional step to filter the generated samples and improve the reliability of the resultant sample set. The feature selection method DD_Rank is based on Restricted Boltzmann Machine (RBM) and ranks features according to their stability and discrimination power. GCO_mine is a lazy learning method based on Graph Cut Optimization (GCO), which considers both the local arrangements and the global structure of the data.OFSET_mine compares favourably to well established composite techniques. Itex hibits high classification performance when applied to a wide range of benchmark medical datasets with variable sample size, dimensionality and imbalance ratios.When applying OFSET _mine on our RVA data, an accuracy of 99.52% is achieved. In addition, using OFSET, the hybrid solution of FiltADASYN and DD_Rank, with Random Forest on our RVA data produces risk group classifications with accuracy 99.68%. This not only reflects the success of the framework but also establishes RVAas a valuable cardiovascular risk predicto

    Deep Learning-Based Intrusion Detection Methods for Computer Networks and Privacy-Preserving Authentication Method for Vehicular Ad Hoc Networks

    Get PDF
    The incidence of computer network intrusions has significantly increased over the last decade, partially attributed to a thriving underground cyber-crime economy and the widespread availability of advanced tools for launching such attacks. To counter these attacks, researchers in both academia and industry have turned to machine learning (ML) techniques to develop Intrusion Detection Systems (IDSes) for computer networks. However, many of the datasets use to train ML classifiers for detecting intrusions are not balanced, with some classes having fewer samples than others. This can result in ML classifiers producing suboptimal results. In this dissertation, we address this issue and present better ML based solutions for intrusion detection. Our contributions in this direction can be summarized as follows: Balancing Data Using Synthetic Data to detect intrusions in Computer Networks: In the past, researchers addressed the issue of imbalanced data in datasets by using over-sampling and under-sampling techniques. In this study, we go beyond such traditional methods and utilize a synthetic data generation method called Con- ditional Generative Adversarial Network (CTGAN) to balance the datasets and in- vestigate its impact on the performance of widely used ML classifiers. To the best of our knowledge, no one else has used CTGAN to generate synthetic samples for balancing intrusion detection datasets. We use two widely used publicly available datasets and conduct extensive experiments and show that ML classifiers trained on these datasets balanced with synthetic samples generated by CTGAN have higher prediction accuracy and Matthew Correlation Coefficient (MCC) scores than those trained on imbalanced datasets by 8% and 13%, respectively. Deep Learning approach for intrusion detection using focal loss function: To overcome the data imbalance problem for intrusion detection, we leverage the specialized loss function, called focal loss, that automatically down-weighs easy ex- amples and focuses on the hard negatives by facilitating dynamically scaled-gradient updates for training ML models effectively. We implement our approach using two well-known Deep Learning (DL) neural network architectures. Compared to training DL models using cross-entropy loss function, our approach (training DL models using focal loss function) improved accuracy, precision, F1 score, and MCC score by 24%, 39%, 39%, and 60% respectively. Efficient Deep Learning approach to detect Intrusions using Few-shot Learning: To address the issue of imbalance the datasets and develop a highly effective IDS, we utilize the concept of few-shot learning. We present a Few-Shot and Self-Supervised learning framework, called FS3, for detecting intrusions in IoT networks. FS3 works in three phases. Our approach involves first pretraining an encoder on a large-scale external dataset in a selfsupervised manner. We then employ few-shot learning (FSL), which seeks to replicate the encoder’s ability to learn new patterns from only a few training examples. During the encoder training us- ing a small number of samples, we train them contrastively, utilizing the triplet loss function. The third phase introduces a novel K-Nearest neighbor algorithm that sub- samples the majority class instances to further reduce imbalance and improve overall performance. Our proposed framework FS3, utilizing only 20% of labeled data, out- performs fully supervised state-of-the-art models by up to 42.39% and 43.95% with respect to the metrics precision and F1 score, respectively. The rapid evolution of the automotive industry and advancements in wireless com- munication technologies will result in the widespread deployment of Vehicular ad hoc networks (VANETs). However, despite the network’s potential to enable intelligent and autonomous driving, it also introduces various attack vectors that can jeopardize its security. In this dissertation, we present efficient privacy-preserving authenticated message dissemination scheme in VANETs. Conditional Privacy-preserving Authentication and Message Dissemination Scheme using Timestamp based Pseudonyms: To authenticate a message sent by a vehicle using its pseudonym, a certificate of the pseudonym signed by the central authority is generally utilized. If a vehicle is found to be malicious, certificates associated with all the pseudonyms assigned to it must be revoked. Certificate revocation lists (CRLs) should be shared with all entities that will be corresponding with the vehicle. As each vehicle has a large pool of pseudonyms allocated to it, the CRL can quickly grow in size as the number of revoked vehicles increases. This results in high storage overheads for storing the CRL, and significant authentication overheads as the receivers must check their CRL for each message received to verify its pseudonym. To address this issue, we present a timestamp-based pseudonym allocation scheme that reduces the storage overhead and authentication overhead by streamlining the CRL management process

    Exploiting gan as an oversampling method for imbalanced data augmentation with application to the fault diagnosis of an industrial robot

    Get PDF
    O diagnóstico inteligente de falhas baseado em aprendizagem máquina geralmente requer um conjunto de dados balanceados para produzir um desempenho aceitável. No entanto, a obtenção de dados quando o equipamento industrial funciona com falhas é uma tarefa desafiante, resultando frequentemente num desequilíbrio entre dados obtidos em condições nominais e com falhas. As técnicas de aumento de dados são das abordagens mais promissoras para mitigar este problema. Redes adversárias generativas (GAN) são um tipo de modelo generativo que consiste de um módulo gerador e de um discriminador. Por meio de aprendizagem adversária entre estes módulos, o gerador otimizado pode produzir padrões sintéticos que podem ser usados para amumento de dados. Investigamos se asGANpodem ser usadas como uma ferramenta de sobre amostra- -gem para compensar um conjunto de dados desequilibrado em uma tarefa de diagnóstico de falhas num manipulador robótico industrial. Realizaram-se uma série de experiências para validar a viabilidade desta abordagem. A abordagem é comparada com seis cenários, incluindo o método clássico de sobre amostragem SMOTE. Os resultados mostram que a GAN supera todos os cenários comparados. Para mitigar dois problemas reconhecidos no treino das GAN, ou seja, instabilidade de treino e colapso de modo, é proposto o seguinte. Propomos uma generalização da GAN de erro quadrado médio (MSE GAN) da Wasserstein GAN com penalidade de gradiente (WGAN-GP), referida como VGAN (GAN baseado numa matriz V) para mitigar a instabilidade de treino. Além disso, propomos um novo critério para rastrear o modelo mais adequado durante o treino. Experiências com o MNIST e no conjunto de dados do manipulador robótico industrial mostram que o VGAN proposto supera outros modelos competitivos. A rede adversária generativa com consistência de ciclo (CycleGAN) visa lidar com o colapso de modo, uma condição em que o gerador produz pouca ou nenhuma variabilidade. Investigamos a distância fatiada de Wasserstein (SWD) na CycleGAN. O SWD é avaliado tanto no CycleGAN incondicional quanto no CycleGAN condicional com e sem mecanismos de compressão e excitação. Mais uma vez, dois conjuntos de dados são avaliados, ou seja, o MNIST e o conjunto de dados do manipulador robótico industrial. Os resultados mostram que o SWD tem menor custo computacional e supera o CycleGAN convencional.Machine learning based intelligent fault diagnosis often requires a balanced data set for yielding an acceptable performance. However, obtaining faulty data from industrial equipment is challenging, often resulting in an imbalance between data acquired in normal conditions and data acquired in the presence of faults. Data augmentation techniques are among the most promising approaches to mitigate such issue. Generative adversarial networks (GAN) are a type of generative model consisting of a generator module and a discriminator. Through adversarial learning between these modules, the optimised generator can produce synthetic patterns that can be used for data augmentation. We investigate whether GAN can be used as an oversampling tool to compensate for an imbalanced data set in an industrial robot fault diagnosis task. A series of experiments are performed to validate the feasibility of this approach. The approach is compared with six scenarios, including the classical oversampling method (SMOTE). Results show that GAN outperforms all the compared scenarios. To mitigate two recognised issues in GAN training, i.e., instability and mode collapse, the following is proposed. We proposed a generalization of both mean sqaure error (MSE GAN) and Wasserstein GAN with gradient penalty (WGAN-GP), referred to as VGAN (the V-matrix based GAN) to mitigate training instability. Also, a novel criterion is proposed to keep track of the most suitable model during training. Experiments on both the MNIST and the industrial robot data set show that the proposed VGAN outperforms other competitive models. Cycle consistency generative adversarial network (CycleGAN) is aiming at dealing with mode collapse, a condition where the generator yields little to none variability. We investigate the sliced Wasserstein distance (SWD) for CycleGAN. SWD is evaluated in both the unconditional CycleGAN and the conditional CycleGAN with and without squeeze-and-excitation mechanisms. Again, two data sets are evaluated, i.e., the MNIST and the industrial robot data set. Results show that SWD has less computational cost and outperforms conventional CycleGAN

    Automated Resolution Selection for Image Segmentation

    Get PDF
    It is well known in image processing in general, and hence in image segmentation in particular, that computational cost increases rapidly with the number and dimensions of the images to be processed. Several fields, such as astronomy, remote sensing, and medical imaging, use very large images, which might also be 3D and/or captured at several frequency bands, all adding to the computational expense. Multiresolution analysis is one method of increasing the efficiency of the segmentation process. One multiresolution approach is the coarse-to-fine segmentation strategy, whereby the segmentation starts at a coarse resolution and is then fine-tuned during subsequent steps. Until now, the starting resolution for segmentation has been selected arbitrarily with no clear selection criteria. The research conducted for this thesis showed that starting from different resolutions for image segmentation results in different accuracies and speeds, even for images from the same dataset. An automated method for resolution selection for an input image would thus be beneficial. This thesis introduces a framework for the selection of the best resolution for image segmentation. First proposed is a measure for defining the best resolution based on user/system criteria, which offers a trade-off between accuracy and time. A learning approach is then described for the selection of the resolution, whereby extracted image features are mapped to the previously determined best resolution. In the learning process, class (i.e., resolution) distribution is imbalanced, making effective learning from the data difficult. A variant of AdaBoost, called RAMOBoost, is therefore used in this research for the learning-based selection of the best resolution for image segmentation. RAMOBoost is designed specifically for learning from imbalanced data. Two sets of features are used: Local Binary Patterns (LBP) and statistical features. Experiments conducted with four datasets using three different segmentation algorithms show that the resolutions selected through learning enable much faster segmentation than the original ones, while retaining at least the original accuracy. For three of the four datasets used, the segmentation results obtained with the proposed framework were significantly better than with the original resolution with respect to both accuracy and time

    Tracking the Temporal-Evolution of Supernova Bubbles in Numerical Simulations

    Get PDF
    The study of low-dimensional, noisy manifolds embedded in a higher dimensional space has been extremely useful in many applications, from the chemical analysis of multi-phase flows to simulations of galactic mergers. Building a probabilistic model of the manifolds has helped in describing their essential properties and how they vary in space. However, when the manifold is evolving through time, a joint spatio-temporal modelling is needed, in order to fully comprehend its nature. We propose a first-order Markovian process that propagates the spatial probabilistic model of a manifold at fixed time, to its adjacent temporal stages. The proposed methodology is demonstrated using a particle simulation of an interacting dwarf galaxy to describe the evolution of a cavity generated by a Supernov

    Towards a more efficient and cost-sensitive extreme learning machine: A state-of-the-art review of recent trend

    Get PDF
    In spite of the prominence of extreme learning machine model, as well as its excellent features such as insignificant intervention for learning and model tuning, the simplicity of implementation, and high learning speed, which makes it a fascinating alternative method for Artificial Intelligence, including Big Data Analytics, it is still limited in certain aspects. These aspects must be treated to achieve an effective and cost-sensitive model. This review discussed the major drawbacks of ELM, which include difficulty in determination of hidden layer structure, prediction instability and Imbalanced data distributions, the poor capability of sample structure preserving (SSP), and difficulty in accommodating lateral inhibition by direct random feature mapping. Other drawbacks include multi-graph complexity, global memory size, one-by-one or chuck-by-chuck (a block of data), global memory size limitation, and challenges with big data. The recent trend proposed by experts for each drawback is discussed in detail towards achieving an effective and cost-sensitive mode

    Machine Learning in Sensors and Imaging

    Get PDF
    Machine learning is extending its applications in various fields, such as image processing, the Internet of Things, user interface, big data, manufacturing, management, etc. As data are required to build machine learning networks, sensors are one of the most important technologies. In addition, machine learning networks can contribute to the improvement in sensor performance and the creation of new sensor applications. This Special Issue addresses all types of machine learning applications related to sensors and imaging. It covers computer vision-based control, activity recognition, fuzzy label classification, failure classification, motor temperature estimation, the camera calibration of intelligent vehicles, error detection, color prior model, compressive sensing, wildfire risk assessment, shelf auditing, forest-growing stem volume estimation, road management, image denoising, and touchscreens

    Text Similarity Between Concepts Extracted from Source Code and Documentation

    Get PDF
    Context: Constant evolution in software systems often results in its documentation losing sync with the content of the source code. The traceability research field has often helped in the past with the aim to recover links between code and documentation, when the two fell out of sync. Objective: The aim of this paper is to compare the concepts contained within the source code of a system with those extracted from its documentation, in order to detect how similar these two sets are. If vastly different, the difference between the two sets might indicate a considerable ageing of the documentation, and a need to update it. Methods: In this paper we reduce the source code of 50 software systems to a set of key terms, each containing the concepts of one of the systems sampled. At the same time, we reduce the documentation of each system to another set of key terms. We then use four different approaches for set comparison to detect how the sets are similar. Results: Using the well known Jaccard index as the benchmark for the comparisons, we have discovered that the cosine distance has excellent comparative powers, and depending on the pre-training of the machine learning model. In particular, the SpaCy and the FastText embeddings offer up to 80% and 90% similarity scores. Conclusion: For most of the sampled systems, the source code and the documentation tend to contain very similar concepts. Given the accuracy for one pre-trained model (e.g., FastText), it becomes also evident that a few systems show a measurable drift between the concepts contained in the documentation and in the source code.</p

    Federated deep learning for botnet attack detection in IoT networks

    Get PDF
    The wide adoption of the Internet of Things (IoT) technology in various critical infrastructure sectors has attracted the attention of cyber attackers. They exploit the vulnerabilities in IoT to form a network of compromised devices, known as botnet, which is used to launch sophisticated cyber-attacks against the connected critical infrastructure. Recently, researchers have widely explored the potentials of Machine Learning (ML) and Deep Learning (DL) to detect botnet attacks in IoT networks. However, there are still some challenges that need to be addressed in this area, which include the determination of optimal model hyperparameters, low classification performance due to imbalanced sample distribution in the training set, high memory space requirement for network traffic data storage, inability to detect zero-day attacks, and lack of data privacy. In order to address these problems, a Federated Deep Learning (FDL) method is developed for botnet attack detection in IoT-enabled critical infrastructure. First, a hyperparameter optimisation method is developed for DL-based botnet attack detection in IoT networks to achieve high classification performance. The effectiveness of the method is evaluated using the Bot-IoT and N-BaIoT datasets, and the DL models achieved 99.99 ± 0.02% accuracy, 97.85 ± 3.77% precision, 98.72 ± 2.77% recall, and 97.72 ± 4.51% F1 score. Then, an oversampling algorithm is combined with DL models to improve the classification performance when the training data is highly imbalanced, without any significant increase in the overall computation time. This method improved the precision, recall, and F1 score of the DL models by 1.66-13.23%. Furthermore, a hybrid DL method is developed to reduce the amount of memory space required to store the network traffic data. This method reduced the memory space requirement for DL-based botnet attack detection by 86.45-98.26%. Finally, a FDL method, which also employed the hyperparameter optimisation, class balance, and memory space reduction methods, is developed to detect zero-day botnet attacks in IoT edge nodes, while preserving the data privacy of IoT users. The FDL models achieved high classification performance, and they had low communication overhead and low network latency

    Predictive and prescriptive modeling for the clinical management of dengue: a case study in Colombia

    Get PDF
    En esta investigación, abordamos el problema del manejo clínico del dengue, que se compone del diagnóstico y el tratamiento de la enfermedad. El dengue es una enfermedad tropical transmitida por vectores que está ampliamente distribuida en todo el mundo. El desarrollo de enfoques que ayuden a la toma de decisiones en enfermedades de interés para la salud pública –como el dengue– es necesario para reducir las tasas de morbilidad y mortalidad. A pesar de la existencia de guías para el manejo clínico, el diagnóstico y el tratamiento del dengue siguen siendo un reto. Para abordar este problema, nuestro objetivo fue desarrollar metodologías, modelos y enfoques para apoyar la toma de decisiones en relación con el manejo clínico de esta infección. Nosotros desarrollamos varios artículos de investigación para cumplir los objetivos propuestos de esta tesis. El primer articulo revisó las últimas tendencias del modelamiento de dengue usando técnicas de aprendizaje automático. El segundo artículo propuso un sistema de apoyo a la decisión para el diagnóstico del dengue utilizando mapas cognitivos difusos. El tercer artículo propuso un ciclo autónomo de tareas de análisis de datos para apoyar tanto el diagnóstico como el tratamiento de la enfermedad. El cuarto artículo presentó una metodología basada en mapas cognitivos difusos y algoritmos de optimización para generar modelos prescriptivos en entornos clínicos. El quinto artículo puso a prueba la metodología anteriormente mencionada en otros dominios de la ciencia como, por ejemplo, los negocios y la educación. Finalmente, el último artículo propuso tres enfoques de aprendizaje federado para garantizar la seguridad y privacidad de los datos relacionados con el manejo clínico del dengue. En cada artículo evaluamos dichas estrategias utilizando diversos conjuntos de datos con signos, síntomas, pruebas de laboratorio e información relacionada con el tratamiento de la enfermedad. Los resultados mostraron la capacidad de las metodologías y modelos desarrollados para predecir la enfermedad, clasificar a los pacientes según su severidad, evaluar el comportamiento de las variables relacionadas con la severidad y recomendar tratamientos basados en las directrices de la Organización Mundial de la Salud.In this research, we address the problem of clinical management of dengue, which is composed of diagnosis and treatment of the disease. Dengue is a vector-borne tropical disease that is widely distributed worldwide. The development of approaches to aid in decision-making for diseases of public health concern –such as dengue– are necessary to reduce morbidity and mortality rates. Despite the existence of clinical management guidelines, the diagnosis and treatment of dengue remains a challenge. To address this problem, our objective was to develop methodologies, models, and approaches to support decision-making regarding the clinical management of this infection. We developed several research articles to meet the proposed objectives of this thesis. The first article reviewed the latest trends in dengue modeling using machine learning (ML) techniques. The second article proposed a decision support system for the diagnosis of dengue using fuzzy cognitive maps (FCMs). The third article proposed an autonomous cycle of data analysis tasks to support both diagnosis and treatment of the disease. The fourth article presented a methodology based on FCMs and optimization algorithms to generate prescriptive models in clinical settings. The fifth article tested the previously mentioned methodology in other science domains such as, business and education. Finally, the last article proposed three federated learning approaches to guarantee the security and privacy of data related to the clinical management of dengue. In each article, we evaluated such strategies using diverse datasets with signs, symptoms, laboratory tests, and information related to the treatment of the disease. The results showed the ability of the developed methodologies and models to predict disease, classify patients according to severity, evaluate the behavior of severity-related variables, and recommend treatments based on World Health Organization (WHO) guidelines
    corecore