1,958 research outputs found

    Building nearest prototype classifiers using a Michigan approach PSO

    Get PDF
    IEEE Swarm Intelligence Symposium. Honolulu, HI, 1-5 april 2007This paper presents an application of particle swarm optimization (PSO) to continuous classification problems, using a Michigan approach. In this work, PSO is used to process training data to find a reduced set of prototypes to be used to classify the patterns, maintaining or increasing the accuracy of the nearest neighbor classifiers. The Michigan approach PSO represents each prototype by a particle and uses modified movement rules with particle competition and cooperation that ensure particle diversity. The result is that the particles are able to recognize clusters, find decision boundaries and achieve stable situations that also retain adaptation potential. The proposed method is tested both with artificial problems and with three real benchmark problems with quite promising results

    Firefly algorithm approach for rational bézier border reconstruction of skin lesions from macroscopic medical images

    Get PDF
    Image segmentation is a fundamental step for image processing of medical images. One of the most important tasks in this step is border reconstruction, which consists of constructing a border curve separating the organ or tissue of interest from the image background. This problem can be formulated as an optimization problem, where the border curve is computed through data fitting procedures from a collection of data points assumed to lie on the boundary of the object under analysis. However, standard mathematical optimization techniques do not provide satisfactory solutions to this problem. Some recent papers have applied evolutionary computation techniques to tackle this issue. Such works are only focused on the polynomial case, ignoring the more powerful (but also more difficult) case of rational curves. In this paper, we address this problem with rational BĂ©zier curves by applying the firefly algorithm, a popular bio-inspired swarm intelligence technique for optimization. Experimental results on medical images of melanomas show that this method performs well and can be successfully applied to this problem

    Multi self-adapting particle swarm optimization algorithm (MSAPSO).

    Get PDF
    The performance and stability of the Particle Swarm Optimization algorithm depends on parameters that are typically tuned manually or adapted based on knowledge from empirical parameter studies. Such parameter selection is ineffectual when faced with a broad range of problem types, which often hinders the adoption of PSO to real world problems. This dissertation develops a dynamic self-optimization approach for the respective parameters (inertia weight, social and cognition). The effects of self-adaption for the optimal balance between superior performance (convergence) and the robustness (divergence) of the algorithm with regard to both simple and complex benchmark functions is investigated. This work creates a swarm variant which is parameter-less, which means that it is virtually independent of the underlying examined problem type. As PSO variants always have the issue, that they can be stuck-in-local-optima, as second main topic the MSAPSO algorithm do have a highly flexible escape-lmin-strategy embedded, which works dimension-less. The MSAPSO algorithm outperforms other PSO variants and also other swarm inspired approaches such as Memetic Firefly algorithm with these two major algorithmic elements (parameter-less approach, dimension-less escape-lmin-strategy). The average performance increase in two dimensions is at least fifteen percent with regard to the compared swarm variants. In higher dimensions (≥ 250) the performance gain accumulates to about fifty percent in average. At the same time the error-proneness of MSAPSO is in average similar or even significant better when converging to the respective global optima’s

    Michigan Particle Swarm Optimization for Prototype Reduction in Classification Problems

    Get PDF
    This paper presents a new approach to Particle Swarm Optimization, called Michigan Approach PSO (MPSO), and its applica- tion to continuous classi cation problems as a Nearest Prototype (NP) classi er. In Nearest Prototype classi ers, a collection of prototypes has to be found that accurately represents the input patterns. The classi er then assigns classes based on the nearest prototype in this collection. The MPSO algorithm is used to process training data to nd those prototypes. In the MPSO algorithm each particle in a swarm represents a single pro- totype in the solution and it uses modi ed movement rules with particle competition and cooperation that ensure particle diversity. The proposed method is tested both with arti cial problems and with real benchmark problems and compared with several algorithms of the same family. Re- sults show that the particles are able to recognize clusters, nd decision boundaries and reach stable situations that also retain adaptation po- tential. The MPSO algorithm is able to improve the accuracy of 1-NN classi ers, obtains results comparable to the best among other classi ers, and improves the accuracy reported in literature for one of the problems.Publicad

    Detection And Classification Of Buried Radioactive Materials

    Get PDF
    This dissertation develops new approaches for detection and classification of buried radioactive materials. Different spectral transformation methods are proposed to effectively suppress noise and to better distinguish signal features in the transformed space. The contributions of this dissertation are detailed as follows. 1) Propose an unsupervised method for buried radioactive material detection. In the experiments, the original Reed-Xiaoli (RX) algorithm performs similarly as the gross count (GC) method; however, the constrained energy minimization (CEM) method performs better if using feature vectors selected from the RX output. Thus, an unsupervised method is developed by combining the RX and CEM methods, which can efficiently suppress the background noise when applied to the dimensionality-reduced data from principle component analysis (PCA). 2) Propose an approach for buried target detection and classification, which applies spectral transformation followed by noisejusted PCA (NAPCA). To meet the requirement of practical survey mapping, we focus on the circumstance when sensor dwell time is very short. The results show that spectral transformation can alleviate the effects from spectral noisy variation and background clutters, while NAPCA, a better choice than PCA, can extract key features for the following detection and classification. 3) Propose a particle swarm optimization (PSO)-based system to automatically determine the optimal partition for spectral transformation. Two PSOs are incorporated in the system with the outer one being responsible for selecting the optimal number of bins and the inner one for optimal bin-widths. The experimental results demonstrate that using variable bin-widths is better than a fixed bin-width, and PSO can provide better results than the traditional Powell’s method. 4) Develop parallel implementation schemes for the PSO-based spectral partition algorithm. Both cluster and graphics processing units (GPU) implementation are designed. The computational burden of serial version has been greatly reduced. The experimental results also show that GPU algorithm has similar speedup as cluster-based algorithm

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Particle Swarm Optimization: Basic Concepts, Variants and Applications in Power Systems

    Get PDF
    Many areas in power systems require solving one or more nonlinear optimization problems. While analytical methods might suffer from slow convergence and the curse of dimensionality, heuristics-based swarm intelligence can be an efficient alternative. Particle swarm optimization (PSO), part of the swarm intelligence family, is known to effectively solve large-scale nonlinear optimization problems. This paper presents a detailed overview of the basic concepts of PSO and its variants. Also, it provides a comprehensive survey on the power system applications that have benefited from the powerful nature of PSO as an optimization technique. For each application, technical details that are required for applying PSO, such as its type, particle formulation (solution representation), and the most efficient fitness functions are also discussed
    • …
    corecore