52 research outputs found

    Alignment parameter calibration for IMU using the Taguchi method for image deblurring

    Get PDF
    Inertial measurement units (IMUs) utilized in smartphones can be used to detect camera motion during exposure, in order to improve image quality degraded with blur through long hand-held exposure. Based on the captured camera motion, blur in images can be removed when an appropriate deblurring filter is used. However, two research issues have not been addressed: (a) the calibration of alignment parameters for the IMU has not been addressed. When inappropriate alignment parameters are used for the IMU, the camera motion would not be captured accurately and the deblurring effectiveness can be downgraded. (b) Also selection of an appropriate deblurring filter correlated with the image quality has still not been addressed. Without the use of an appropriate deblurring filter, the image quality could not be optimal. This paper proposes a systematic method, namely the Taguchi method, which is a robust and systematic approach for designing reliable and high-precision devices, in order to perform the alignment parameter calibration for the IMU and filter selection. The Taguchi method conducts a small number of systematic experiments based on orthogonal arrays. It studies the impact of the alignment parameters and appropriate deblurring filter, which attempts to perform an effective deblurring. Several widely adopted image quality metrics are used to evaluate the deblurred images generated by the proposed Taguchi method. Experimental results show that the quality of deblurred images achieved by the proposed Taguchi method is better than those obtained by deblurring methods which are not involved with the alignment parameter calibration and filter selection. Also, much less computational effort is required by the Taguchi method when comparing with the commonly used optimization methods for determining alignment parameters and deblurring filter

    Image Deblurring for Navigation Systems of Vision Impaired People Using Sensor Fusion Data

    Get PDF
    Image deblurring is a key component in vision based indoor/outdoor navigation systems; as blurring is one of the main causes of poor image quality. When images with poor quality are used for analysis, navigation errors are likely to be generated. For navigation systems, camera movement mainly causes blurring, as the camera is continuously moving by the body movement. This paper proposes a deblurring methodology that takes advantage of the fact that most smartphones are equipped with 3-axis accelerometers and gyroscopes. It uses data of the accelerometer and gyroscope to derive a motion vector calculated from the motion of the smartphone during the image-capturing period. A heuristic method, namely particle swarm optimization, is developed to determine the optimal motion vector, in order to deblur the captured image by reversing the effect of motion. Experimental results indicated that deblurring can be successfully performed using the optimal motion vector and that the deblurred images can be used as a readily approach to object and path identification in vision based navigation systems, especially for blind and vision impaired indoor/outdoor navigation. Also, the performance of proposed method is compared with the commonly used deblurring methods. Better results in term of image quality can be achieved. This experiment aims to identify issues in image quality including low light conditions, low quality images due to movement of the capture device and static and moving obstacles in front of the user in both indoor and outdoor environments. From this information, image-processing techniques to will be identified to assist in object and path edge detection necessary to create a guidance system for those with low vision

    An edge detection framework conjoining with IMU data for assisting indoor navigation of visually impaired persons

    Get PDF
    Smartphone applications based on object detection techniques have recently been proposed to assist visually impaired persons with navigating indoor environments. In the smartphone, digital cameras are installed to detect objects which are important for navigation. Prior to detect the interested objects from images, edges on the objects have to be identified. Object edges are difficult to be detected accurately as the image is contaminated by strong image blur which is caused by camera movement. Although deblurring algorithms can be used to filter blur noise, they are computationally expensive and not suitable for real-time implementation. Also edge detection algorithms are mostly developed for stationary images without serious blur. In this paper, a modified sigmoid function (MSF) framework based on inertial measurement unit (IMU) is proposed to mitigate these problems. The IMU estimates blur levels to adapt the MSF which is computationally simple. When the camera is moving, the topological structure of the MSF is estimated continuously in order to improve effectiveness of edge detections. The performance of the MSF framework is evaluated by detecting object edges on video sequences associated with IMU data. The MSF framework is benchmarked against existing edge detection techniques and results show that it can obtain comparably lower errors. It is further shown that the computation time is significantly decreased compared to using techniques that deploy deblurring algorithms, thus making our proposed technique a strong candidate for reliable real-time navigation

    Parameters Estimation For Image Restoration

    Get PDF
    Image degradation generally occurs due to transmission channel error, camera mis-focus, atmospheric turbulence, relative object-camera motion, etc. Such degradations are unavoidable while a scene is captured through a camera. As degraded images are having less scientific values, restoration of such images is extremely essential in many practical applications. In this thesis, attempts have been made to recover images from their degraded observations. Various degradations including, out-of-focus blur, motion blur, atmospheric turbulence blur along with Gaussian noise are considered. Basically image restoration schemes are based on classical, regularisation parameter estimation and PSF estimation. In this thesis, five different contributions have been made based on various aspects of restoration. Four of them deal with spatial invariant degradation and in one of the approach we attempt for removal of spatial variant degradation. Two different schemes are proposed to estimate the motion blur parameters. Two dimensional Gabor filter has been used to calculate the direction of the blur. Radial basis function neural network (RBFNN) has been utilised to find the length of the blur. Subsequently, Wiener filter has been used to restore the images. Noise robustness of the proposed scheme is tested with different noise strengths. The blur parameter estimation problem is modelled as a pattern classification problem and is solved using support vector machine (SVM). The length parameter of motion blur and sigma (σ) parameter of Gaussian blur are identified through multi-class SVM. Support vector regression (SVR) has been utilised to obtain a true mapping of the images from the observed noisy blurred image. The parameters in SVR play a key role in SVR performance and these are optimised through particle swarm optimisation (PSO) technique. The optimised SVR model is used to restore the noisy blurred images. Blur in the presence of noise makes the restoration problem ill-conditioned. The regularisation parameter required for restoration of noisy blurred image is discussed and for the purpose, a global optimisation scheme namely PSO is utilisedto minimise the cost function of generalised cross validation (GCV) measure, which is dependent on regularisation parameter. This eliminates the problem of falling into a local minima. The scheme adapts to degradations due to motion and out-of-focus blur, associated with noise of varying strengths. In another contribution, an attempt has been made to restore images degraded due to rotational motion. Such situation is considered as spatial variant blur and handled by considering this as a combination of a number of spatial invariant blurs. The proposed scheme divides the blurred image into a number of images using elliptical path modelling. Each image is deblurred separately using Wiener filter and finally integrated to construct the whole image. Each model is studied separately, and experiments are conducted to evaluate their performances. The visual as well as the peak signal to noise ratio (PSNR in dB) of restored images are compared with competent recent schemes

    A Pattern Classification Based approach for Blur Classification

    Get PDF
    Blur type identification is one of the most crucial step of image restoration. In case of blind restoration of such images, it is generally assumed that the blur type is known prior to restoration of such images. However, it is not practical in real applications. So, blur type identification is extremely desirable before application of blind restoration technique to restore a blurred image. An approach to categorize blur in three classes namely motion, defocus, and combined blur is presented in this paper. Curvelet transform based energy features are utilized as features of blur patterns and a neural network is designed for classification. The simulation results show preciseness of proposed approach

    Shear-promoted drug encapsulation into red blood cells: a CFD model and μ-PIV analysis

    Get PDF
    The present work focuses on the main parameters that influence shear-promoted encapsulation of drugs into erythrocytes. A CFD model was built to investigate the fluid dynamics of a suspension of particles flowing in a commercial micro channel. Micro Particle Image Velocimetry (μ-PIV) allowed to take into account for the real properties of the red blood cell (RBC), thus having a deeper understanding of the process. Coupling these results with an analytical diffusion model, suitable working conditions were defined for different values of haematocrit

    An Optimal Region Of Interest Localization Using Edge Refinement Filter And Entropy-Based Measurement For Point Spread Function Stimation

    Get PDF
    The use of edges to determine an optimal region of interest (ROI) location is increasingly becoming popular for image deblurring. Recent studies have shown that regions with strong edges tend to produce better deblurring results. In this study, a direct method for ROI localization based on edge refinement filter and entropy-based measurement is proposed. Using this method, the randomness of grey level distribution is quantitatively measured, from which the ROI is determined. This method has low computation cost since it contains no matrix operations. The proposed method has been tested using three sets of test images - Dataset I, II and III. Empirical results suggest that the improved edge refinement filter is competitive when compared to the established edge detection schemes and achieves better performance in the Pratt's figure-of-merit (PFoM) and the twofold consensus ground truth (TCGT); averaging at 15.7 % and 28.7 %, respectively. The novelty of the proposed approach lies in the use of this improved filtering strategy for accurate estimation of point spread function (PSF), and hence, a more precise image restoration. As a result, the proposed solutions compare favourably against existing techniques with the peak signal-to-noise ratio (PSNR), kernel similarity (KS) index, and error ratio (ER) averaging at 24.8 dB, 0.6 and 1.4, respectively. Additional experiments involving real blurred images demonstrated the competitiveness of the proposed approach in performing restoration in the absent of PSF

    Evolutionary Models for Signal Enhancement and Approximation

    Get PDF
    This thesis deals with nature-inspired evolution processes for the purpose of signal enhancement and approximation. The focus lies on mathematical models which originate from the description of swarm behaviour. We extend existing approaches and show the potential of swarming processes as a modelling tool in image processing. In our work, we discuss the use cases of grey scale quantisation, contrast enhancement, line detection, and coherence enhancement. Furthermore, we propose a new and purely repulsive model of swarming that turns out to describe a specific type of backward diffusion process. It is remarkable that our model provides extensive stability guarantees which even support the utilisation of standard numerics. In experiments, we demonstrate its applicability to global and local contrast enhancement of digital images. In addition, we study the problem of one-dimensional signal approximation with limited resources using an adaptive sampling approach including tonal optimisation. We suggest a direct energy minimisation strategy and validate its efficacy in experiments. Moreover, we show that our approximation model can outperform a method recently proposed by Dar and Bruckstein
    corecore