768 research outputs found

    A simulation study on the choice of regularization parameter in l2-norm ultrasound image restoration

    Get PDF
    International audienceUltrasound image deconvolution has been widely investigated in the literature. Among the existing approaches, the most common are based on ℓ2-norm regularization (or Tikhonov optimization) or the well-known Wiener filtering. However, the success of the Wiener filter in practical situations largely depends on the choice of the regularization hyperparameter. An appropriate choice is necessary to guarantee the balance between data fidelity and smoothness of the deconvolution result. In this paper, we revisit different approaches for automatically choosing this regularization parameter and compare them in the context of ultrasound image deconvolution via Wiener filtering. Two synthetic ultrasound images are used in order to compare the performances of the addressed methods

    Towards accurate partial volume correction in (99m}^Tc oncology SPECT: perturbation for case-specific resolution estimation

    Get PDF
    BACKGROUND: Currently, there is no consensus on the optimal partial volume correction (PVC) algorithm for oncology imaging. Several existing PVC methods require knowledge of the reconstructed resolution, usually as the point spread function (PSF)-often assumed to be spatially invariant. However, this is not the case for SPECT imaging. This work aimed to assess the accuracy of SPECT quantification when PVC is applied using a case-specific PSF. METHODS: Simulations of SPECT [Formula: see text]Tc imaging were performed for a range of activity distributions, including those replicating typical clinical oncology studies. Gaussian PSFs in reconstructed images were estimated using perturbation with a small point source. Estimates of the PSF were made in situations which could be encountered in a patient study, including; different positions in the field of view, different lesion shapes, sizes and contrasts, noise-free and noisy data. Ground truth images were convolved with the perturbation-estimated PSF, and with a PSF reflecting the resolution at the centre of the field of view. Both were compared with reconstructed images and the root-mean-square error calculated to assess the accuracy of the estimated PSF. PVC was applied using Single Target Correction, incorporating the perturbation-estimated PSF. Corrected regional mean values were assessed for quantitative accuracy. RESULTS: Perturbation-estimated PSF values demonstrated dependence on the position in the Field of View and the number of OSEM iterations. A lower root mean squared error was observed when convolution of the ground truth image was performed with the perturbation-estimated PSF, compared with convolution using a different PSF. Regional mean values following PVC using the perturbation-estimated PSF were more accurate than uncorrected data, or data corrected with PVC using an unsuitable PSF. This was the case for both simple and anthropomorphic phantoms. For the simple phantom, regional mean values were within 0.7% of the ground truth values. Accuracy improved after 5 or more OSEM iterations (10 subsets). For the anthropomorphic phantoms, post-correction regional mean values were within 1.6% of the ground truth values for noise-free uniform lesions. CONCLUSION: Perturbation using a simulated point source could potentially improve quantitative SPECT accuracy via the application of PVC, provided that sufficient reconstruction iterations are used

    Ultrafast Ultrasound Imaging

    Get PDF
    Among medical imaging modalities, such as computed tomography (CT) and magnetic resonance imaging (MRI), ultrasound imaging stands out due to its temporal resolution. Owing to the nature of medical ultrasound imaging, it has been used for not only observation of the morphology of living organs but also functional imaging, such as blood flow imaging and evaluation of the cardiac function. Ultrafast ultrasound imaging, which has recently become widely available, significantly increases the opportunities for medical functional imaging. Ultrafast ultrasound imaging typically enables imaging frame-rates of up to ten thousand frames per second (fps). Due to the extremely high temporal resolution, this enables visualization of rapid dynamic responses of biological tissues, which cannot be observed and analyzed by conventional ultrasound imaging. This Special Issue includes various studies of improvements to the performance of ultrafast ultrasoun

    Myocardial Defect Detection Using PET-CT: Phantom Studies

    Get PDF
    It is expected that both noise and activity distribution can have impact on the detectability of a myocardial defect in a cardiac PET study. In this work, we performed phantom studies to investigate the detectability of a defect in the myocardium for different noise levels and activity distributions. We evaluated the performance of three reconstruction schemes: Filtered Back-Projection (FBP), Ordinary Poisson Ordered Subset Expectation Maximization (OP–OSEM), and Point Spread Function corrected OSEM (PSF–OSEM). We used the Channelized Hotelling Observer (CHO) for the task of myocardial defect detection. We found that the detectability of a myocardial defect is almost entirely dependent on the noise level and the contrast between the defect and its surroundings

    Evaluation of digital PET/CT system for myocardial perfusion imaging

    Get PDF
    Myocardial perfusion imaging (MPI) with Positron Emission Tomography (PET) allows quantitative measurements of absolute myocardial blood flow (MBF). PET system count-rate capabilities, reconstruction techniques, and other technical factors may influence MBF quantification reproducibility and accuracy. In this thesis the aims were to evaluate the effect of different reconstruction parameters on [15O]H2O MPI using a flow phantom and clinical retrospective data from patients who had undergone [15O]H2O MPI for suspected obstructive coronary artery disease. Also, the digital and analog PET system count-rate capabilities were assessed in high count-rate studies. Finally, the aim was to establish the contribution of technical factors on quantitative reproducibility and accuracy on two digital PET systems. The different reconstruction parameters resulted in a 7 % relative error with the image-derived flow values compared to the reference flow values in phantom studies. Similar differences were measured in MBF values in patients. Also, different reconstruction algorithms resulted in similar classification of myocardial ischemia in 99 % of the subjects. The digital PET resulted in 12.8 Mcps total prompts and 0.47 Mcps trues, and the analog PET in 6.85 Mcps total prompts and 1.15 Mcps trues with the highest injected activities. The modelled flow values were reproducible on digital PET systems but future studies need to be conducted to develop a standardized and repeatable bolus injection protocol. The results of these studies showed that the digital PET system can be reliably used in MPI in terms of system count-rate capabilities and novel reconstruction techniques with small contribution from technical factors. The findings offer a basis for assessing reproducibility in MPI in multi-center studies

    Fast Plane Wave Imaging

    Get PDF

    Application of Blind Deblurring Reconstruction Technique to SPECT Imaging

    Get PDF
    An SPECT image can be approximated as the convolution of the ground truth spatial radioactivity with the system point spread function (PSF). The PSF of an SPECT system is determined by the combined effect of several factors, including the gamma camera PSF, scattering, attenuation, and collimator response. It is hard to determine the SPECT system PSF analytically, although it may be measured experimentally. We formulated a blind deblurring reconstruction algorithm to estimate both the spatial radioactivity distribution and the system PSF from the set of blurred projection images. The algorithm imposes certain spatial-frequency domain constraints on the reconstruction volume and the PSF and does not otherwise assume knowledge of the PSF. The algorithm alternates between two iterative update sequences that correspond to the PSF and radioactivity estimations, respectively. In simulations and a small-animal study, the algorithm reduced image blurring and preserved the edges without introducing extra artifacts. The localized measurement shows that the reconstruction efficiency of SPECT images improved more than 50% compared to conventional expectation maximization (EM) reconstruction. In experimental studies, the contrast and quality of reconstruction was substantially improved with the blind deblurring reconstruction algorithm

    Theoretical and Experimental Evaluation of Spatial Resolution in a Variable Resolution X-Ray Computed Tomography Scanner

    Get PDF
    A variable resolution x-ray (VRX) computed tomography (CT) scanner can image objects of various sizes with greatly improved spatial resolution. The scanner employs an angulated discrete detector and achieves the resolution boost by matching the detector angulation to the scanner field of view (FOV) determined by the size of an object being imaged. A comprehensive evaluation of spatial resolution in an experimental version of the VRX CT scanner is presented in this dissertation. Two components of this resolution were evaluated – the pre-reconstruction spatial resolution, described by the detector presampling modulation transfer function (MTF), and the post-reconstruction spatial resolution, given by the scanner reconstruction MTF. The detector presampling MTF was modeled by the Monte Carlo simulation and measured by the moving-slit method. The modeled results showed the increase in the maximum cutoff frequency (in the detector plane) from 1.53 to 53.64 cycles per mm (cy/mm) as the scanner FOV decreased from 32 to 1 cm. The measured results supported the modeling, except for the small FOVs (below 8 cm), where the MTF could not be measured up to the cutoff frequency due to the focal-spot limitation. The scanner reconstruction MTF was measured by the special-phantom method. The measured results demonstrated the increase in the average cutoff frequency (in the object plane) from 2.44 to 4.13 cy/mm as the scanner FOV decreased from 16 to 8 cm. The MTF could not be measured at the FOVs other than 8 and 16 cm, due to the calibration-reconstruction inaccuracies and, again, the focal-spot limitation. Overall, the evaluation confirmed the potential value of the VRX CT scanner and produced results important for its further development

    PyTomography: A Python Library for Quantitative Medical Image Reconstruction

    Full text link
    Background: There is a scarcity of open-source libraries in medical imaging dedicated to both (i) the development and deployment of novel reconstruction algorithms and (ii) support for clinical data. Purpose: To create and evaluate a GPU-accelerated, open-source, and user-friendly image reconstruction library, designed to serve as a central platform for the development, validation, and deployment of novel tomographic reconstruction algorithms. Methods: PyTomography was developed using Python and inherits the GPU-accelerated functionality of PyTorch for fast computations. The software uses a modular design that decouples the system matrix from reconstruction algorithms, simplifying the process of integrating new imaging modalities or developing novel reconstruction techniques. As example developments, SPECT reconstruction in PyTomography is validated against both vendor-specific software and alternative open-source libraries. Bayesian reconstruction algorithms are implemented and validated. Results: PyTomography is consistent with both vendor-software and alternative open source libraries for standard SPECT clinical reconstruction, while providing significant computational advantages. As example applications, Bayesian reconstruction algorithms incorporating anatomical information are shown to outperform the traditional ordered subset expectation maximum (OSEM) algorithm in quantitative image analysis. PSF modeling in PET imaging is shown to reduce blurring artifacts. Conclusions: We have developed and publicly shared PyTomography, a highly optimized and user-friendly software for quantitative image reconstruction of medical images, with a class hierarchy that fosters the development of novel imaging applications.Comment: 26 pages, 7 figure

    Portable Ultrasound Imaging

    Get PDF
    This PhD project investigates hardware strategies and imaging methods for hand-held ultrasound systems. The overall idea is to use a wireless ultrasound probe linked to general-purpose mobile devices for the processing and visualization. The approach has the potential to reduce the upfront costs of the ultrasound system and, consequently, to allow for a wide-scale utilization of diagnostic ultrasound in any medical specialties and out of the radiology department. The first part of the contribution deals with the study of hardware solutions for the reduction of the system complexity. Analog and digital beamforming strategies are simulated from a system-level perspective. The quality of the B-mode image is evaluated and the minimum specifications are derived for the design of a portable probe with integrated electronics in-handle. The system is based on a synthetic aperture sequential beamforming approach that allows to significantly reduce the data rate between the probe and processing unit. The second part investigates the feasibility of vector flow imaging in a hand-held ultrasound system. Vector flow imaging overcomes the limitations of conventional imaging methods in terms of flow angle compensation. Furthermore, high frame rate can be obtained by using synthetic aperture focusing techniques. A method is developed combining synthetic aperture sequential beamforming and directional transverse oscillation to achieve the wireless transmission of the data along with a relatively inexpensive 2-D velocity estimation. The performance of the method is thoroughly assessed through simulations and measurements, and in vivo investigations are carried out to show its potential in presence of complex flow dynamics. A sufficient frame rate is achieved to allow for the visualization of vortices in the carotid bifurcation. Furthermore, the method is implemented on a commercially available tablet to evaluate the real-time processing performance in the built-in GPU with concurrent wireless transmission of the data. Based on the demonstrations in this thesis, a flexible framework can be implemented with performance that can be scaled to the needs of the user and according to the computing resources available. The integration of high-frame-rate vector flow imaging in a hand-held ultrasound scanner, in addition, has the potential to improve the operator’s workflow and opens the way to new possibilities in the clinical practice
    corecore