1,676 research outputs found

    Space-charge distortion of transverse profiles measured by electron-based Ionization Profile Monitors and correction methods

    Full text link
    Measurements of transverse profiles using Ionization Profile Monitors (IPMs) for high brightness beams are affected by the electromagnetic field of the beam. This interaction may cause a distortion of the measured profile shape despite strong external magnetic field applied to impose limits on the transverse movement of electrons. The mechanisms leading to this distortion are discussed in detail. The distortion itself is described by means of analytic calculations for simplified beam distributions and a full simulation model for realistic distributions. Simple relation for minimum magnetic field scaling with beam parameters for avoiding profile distortions is presented. Further, application of machine learning algorithms to the problem of reconstructing the actual beam profile from distorted measured profile is presented. The obtained results show good agreement for tests on simulation data. The performance of these algorithms indicate that they could be very useful for operations of IPMs on high brightness beams or IPMs with weak magnetic field

    Using Machine-Learning to Optimize phase contrast in a Low-Cost Cellphone Microscope

    Get PDF
    Cellphones equipped with high-quality cameras and powerful CPUs as well as GPUs are widespread. This opens new prospects to use such existing computational and imaging resources to perform medical diagnosis in developing countries at a very low cost. Many relevant samples, like biological cells or waterborn parasites, are almost fully transparent. As they do not exhibit absorption, but alter the light's phase only, they are almost invisible in brightfield microscopy. Expensive equipment and procedures for microscopic contrasting or sample staining often are not available. By applying machine-learning techniques, such as a convolutional neural network (CNN), it is possible to learn a relationship between samples to be examined and its optimal light source shapes, in order to increase e.g. phase contrast, from a given dataset to enable real-time applications. For the experimental setup, we developed a 3D-printed smartphone microscope for less than 100 \$ using off-the-shelf components only such as a low-cost video projector. The fully automated system assures true Koehler illumination with an LCD as the condenser aperture and a reversed smartphone lens as the microscope objective. We show that the effect of a varied light source shape, using the pre-trained CNN, does not only improve the phase contrast, but also the impression of an improvement in optical resolution without adding any special optics, as demonstrated by measurements

    Using Machine-Learning to Optimize phase contrast in a Low-Cost Cellphone Microscope

    Get PDF
    Cellphones equipped with high-quality cameras and powerful CPUs as well as GPUs are widespread. This opens new prospects to use such existing computational and imaging resources to perform medical diagnosis in developing countries at a very low cost. Many relevant samples, like biological cells or waterborn parasites, are almost fully transparent. As they do not exhibit absorption, but alter the light's phase only, they are almost invisible in brightfield microscopy. Expensive equipment and procedures for microscopic contrasting or sample staining often are not available. By applying machine-learning techniques, such as a convolutional neural network (CNN), it is possible to learn a relationship between samples to be examined and its optimal light source shapes, in order to increase e.g. phase contrast, from a given dataset to enable real-time applications. For the experimental setup, we developed a 3D-printed smartphone microscope for less than 100 \$ using off-the-shelf components only such as a low-cost video projector. The fully automated system assures true Koehler illumination with an LCD as the condenser aperture and a reversed smartphone lens as the microscope objective. We show that the effect of a varied light source shape, using the pre-trained CNN, does not only improve the phase contrast, but also the impression of an improvement in optical resolution without adding any special optics, as demonstrated by measurements
    corecore