212 research outputs found

    TOI-3785 b: A Low-Density Neptune Orbiting an M2-Dwarf Star

    Full text link
    Using both ground-based transit photometry and high-precision radial velocity (RV) spectroscopy, we confirm the planetary nature of TOI-3785 b. This transiting Neptune orbits an M2-Dwarf star with a period of ~4.67 days, a planetary radius of 5.14 +/- 0.16 Earth Radii, a mass of 14.95 +4.10, -3.92 Earth Masses, and a density of 0.61 +0.18, -0.17 g/cm^3. TOI-3785 b belongs to a rare population of Neptunes (4 Earth Radii < Rp < 7 Earth Radii) orbiting cooler, smaller M-dwarf host stars, of which only ~10 have been confirmed. By increasing the number of confirmed planets, TOI-3785 b offers an opportunity to compare similar planets across varying planetary and stellar parameter spaces. Moreover, with a high transmission spectroscopy metric (TSM) of ~150 combined with a relatively cool equilibrium temperature of 582 +/- 16 K and an inactive host star, TOI-3785 b is one of the more promising low-density M-dwarf Neptune targets for atmospheric follow-up. Future investigation into atmospheric mass loss rates of TOI-3785 b may yield new insights into the atmospheric evolution of these low-mass gas planets around M-dwarfs.Comment: 22 pages, 6 figures, 6 tables, Submitted to A

    Obesity and Diabetes Cause Cognitive Dysfunction in the Absence of Accelerated β-Amyloid Deposition in a Novel Murine Model of Mixed or Vascular Dementia

    Get PDF
    Mid-life obesity and type 2 diabetes mellitus (T2DM) confer a modest, increased risk for Alzheimer\u27s disease (AD), though the underlying mechanisms are unknown. We have created a novel mouse model that recapitulates features of T2DM and AD by crossing morbidly obese and diabetic db/db mice with APPΔNL/ΔNLx PS1P264L/P264L knock-in mice. These mice (db/AD) retain many features of the parental lines (e.g. extreme obesity, diabetes, and parenchymal deposition of β-amyloid (Aβ)). The combination of the two diseases led to additional pathologies-perhaps most striking of which was the presence of severe cerebrovascular pathology, including aneurysms and small strokes. Cortical Aβ deposition was not significantly increased in the diabetic mice, though overall expression of presenilin was elevated. Surprisingly, Aβ was not deposited in the vasculature or removed to the plasma, and there was no stimulation of activity or expression of major Aβ-clearing enzymes (neprilysin, insulin degrading enzyme, or endothelin-converting enzyme). The db/AD mice displayed marked cognitive impairment in the Morris Water Maze, compared to either db/db or APPΔNLx PS1P264L mice. We conclude that the diabetes and/or obesity in these mice leads to a destabilization of the vasculature, leading to strokes and that this, in turn, leads to a profound cognitive impairment and that this is unlikely to be directly dependent on Aβ deposition. This model of mixed or vascular dementia provides an exciting new avenue of research into the mechanisms underlying the obesity-related risk for age-related dementia, and will provide a useful tool for the future development of therapeutics

    The impact of different assumptions about reproductive potential and recruitment on a Management Strategy Evaluation for the Greenland halibut stock in NAFO Subarea 2 and Division 3KLMNO

    Get PDF
    We tested whether our perception of the performance of the adopted Harvest Control Rule (HCR) for Greenland halibut was robust to using different measures of Reproductive Potential (RP) combined with different assumptions about the stock recruit relationship to drive the stock dynamics in simulations. We tested the HCR using alternative stock recruitment functions (segmented regression, Ricker and modified Ricker) with different RP indices which vary in the level of biological complexity. The RP indices used in increasing order of biological information were: Biomass 10+, SSB with varying maturity at age (SSB), female SSB (FSB), and Total Egg Production (TEP). All Operating Models (OM) were based on the current accepted XSA assessment. Understanding the basis of uncertainty in the S/R relationships is generally the most difficult outstanding problem in fisheries assessment and management and it is a key problem in Management Strategy Evaluation (MSE). A Ricker stock recruitment function fits the Greenland halibut stock recruitment data better than the segmented regression for all the RP indices, except TEP. The results show that the inclusion of more biological information when estimating Reproductive Potential does not improve the stock recruitment fit for either (segmented regression or Ricker). The best fits in both cases were obtained in descending order with: 10+Biomass, SSB, FSB, and TEP. All the OMs based on the segmented regression have very similar results and seem to be robust to assumptions about RP. However, there was variability in the results of the different indices of RP in the Ricker and modified Ricker OMs and some impact on whether performance targets were met. The choice of stock recruit function had a greater impact than the inclusion of more biological information in the index of RP. The inclusion of alternative indices of RP is likely to have more of an impact for stocks with depleted reproductive capacity and/or where alternative indices have a greater effect on the S/R relationships.Postprint0,000

    Excellent Silicon Surface Passivation Achieved by Industrial Inductively Coupled Plasma Deposited Hydrogenated Intrinsic Amorphous Silicon Suboxide

    Get PDF
    We present an alternative method of depositing a high-quality passivation film for heterojunction silicon wafer solar cells, in this paper. The deposition of hydrogenated intrinsic amorphous silicon suboxide is accomplished by decomposing hydrogen, silane, and carbon dioxide in an industrial remote inductively coupled plasma platform. Through the investigation on CO2 partial pressure and process temperature, excellent surface passivation quality and optical properties are achieved. It is found that the hydrogen content in the film is much higher than what is commonly reported in intrinsic amorphous silicon due to oxygen incorporation. The observed slow depletion of hydrogen with increasing temperature greatly enhances its process window as well. The effective lifetime of symmetrically passivated samples under the optimal condition exceeds 4.7 ms on planar n-type Czochralski silicon wafers with a resistivity of 1 Ωcm, which is equivalent to an effective surface recombination velocity of less than 1.7 cms−1 and an implied open-circuit voltage (Voc) of 741 mV. A comparison with several high quality passivation schemes for solar cells reveals that the developed inductively coupled plasma deposited films show excellent passivation quality. The excellent optical property and resistance to degradation make it an excellent substitute for industrial heterojunction silicon solar cell production

    Cryo-protective effect of an ice-binding protein derived from Antarctic bacteria

    Get PDF
    Cold environments are populated by organisms able to contravene deleterious effects of low temperature by diverse adaptive strategies, including the production of ice binding proteins (IBPs) that inhibit the growth of ice crystals inside and outside cells. We describe the properties of such a protein (EfcIBP) identified in the metagenome of an Antarctic biological consortium composed of the ciliate Euplotes focardii and psychrophilic non-cultured bacteria. Recombinant EfcIBP can resist freezing without any conformational damage and is moderately heat stable, with a midpoint temperature of 66.4 °C. Tested for its effects on ice, EfcIBP shows an unusual combination of properties not reported in other bacterial IBPs. First, it is one of the best-performing IBPs described to date in the inhibition of ice recrystallization, with effective concentrations in the nanomolar range. Moreover, EfcIBP has thermal hysteresis activity (0.53 °C at 50 μm) and it can stop a crystal from growing when held at a constant temperature within the thermal hysteresis gap. EfcIBP protects purified proteins and bacterial cells from freezing damage when exposed to challenging temperatures. EfcIBP also possesses a potential N-terminal signal sequence for protein transport and a DUF3494 domain that is common to secreted IBPs. These features lead us to hypothesize that the protein is either anchored at the outer cell surface or concentrated around cells to provide survival advantage to the whole cell consortium

    Trees in the Andes:: Sustainable livelihood strategies for risk reduction

    Get PDF
    High mountain regions including the Andean region are very sensitive to climate change. Farmers in the central Andes of Peru are increasingly being exposed to the impacts of climate variability. This transdisciplinary research uses field laboratories, combining the farming system and the sustainable livelihood approaches, to carry out social, ecological, and financial assessments so as to identify sustainable and resilient livelihood strategies for small-scale Andean farmers. The first research step studies and characterizes farm household systems, influenced by their biophysical and socioeconomic contexts, for which two vulnerability indices were elaborated. Focused on the climate variability, the five livelihood assets and the three IPCC’s vulnerability components, these indices show the highly sensitive conditions of most communities with poor health conditions, access to infrastructure and public services. Farmers’ capacity of response is often limited by the low on-farm diversity and lack of organization. Thereafter, sustainable livelihood strategies were identified. These include on-farm intensification and non-farm labor intensification for lowland and better-access communities. In the middle-access and highland communities, where temporary migration is a common coping strategy, sustainable scenarios include an increment in diversification strategies through agrobiodiversity and a larger share of tree-based production systems. Furthermore, research step II explores local strategies to cope with agricultural droughts and evaluates, by means of natural resource assessment methods, agroforestry systems as an alternative to reduce their negative effects. Mainly affected by the increasing variation in precipitation events, farmers identify off-farm and on-farm diversification as adaptive strategies against agricultural droughts that reduce the weather dependence and covariance between livelihood activities. Among the introduction of more resistant crop and pasture varieties, the incorporation of trees in their system is desired because of their positive influence in soil moisture and crop yields. Soil moisture in agroforestry systems with eucalyptus trees is 10-20% higher than in agricultural systems during the beginning of the wet season. Differences in the soil moisture during the end of the dry season and in the potato yield are not evident between these systems, although an area without sowing reduced the agricultural output in 13-17% in agroforestry systems. Research step III seeks to maximize the efficiency of resource allocation in farm household systems by developing a linear programming optimization model. This financial assessment underpinned the need of additional off-farm activities for resource-scarcer farmers. In addition, under interest rates below 15% the model includes tree-based production systems as part of the optimal solution. However, with increasing interest rates, a higher share of land is used to cover household’s basic needs and fewer resources are available for capital accumulation activities such as forestry. Variations introduced in the model show that pasture systems are more sensitive to changes in the production outputs, whereas variation in farm worker wages and tree prices affected less the optimal solutions, making farming systems less sensitive to these market changes. Finally, the incorporation of tree-based systems have proved to be a sustainable and resilient livelihood strategy against climate variability available for particular farm household systems of the study area.:1 Introduction - 1 - 1.1 Introduction and justification - 1 - 1.2 Objectives and thesis statements - 2 - 1.3 Outline - 3 - 1.4 Definition of terms - 5 - 1.4.1 Vulnerability - 5 - 1.4.2 Resilience - 7 - 1.4.3 Agroforestry systems - 8 - 1.4.4 Farming system approach - 9 - 1.4.5 Farm household system - 10 - 1.4.6 Sustainable livelihood approach - 10 - 2 Framework and study site - 14 - 2.1 Theoretical framework - 14 - 2.2 Methodological framework - 18 - 2.2.1 Field laboratories - 18 - 2.2.2 Methods - 19 - 2.2.3 Methodology applied in research step I: Vulnerability in Achamayo - 21 - 2.2.4 Methodology applied in research step II: Agroforestry systems and agricultural droughts - 29 - 2.2.5 Methodology applied in research step III: Modeling small farm production systems - 33 - 2.2.6 Selection of case studies - 34 - 2.3 Study area - 35 - 2.3.1 Soils and topography - 35 - 2.3.2 Weather - 37 - 2.3.3 Agro-ecological zones and vegetation - 38 - 2.3.4 Climate change - 40 - 2.3.5 Socioeconomic characteristics - 42 - 2.3.6 Population - 43 - 2.3.7 External determinants - 71 - 2.4 Case studies - 47 - 2.4.1 Lowland communities (L) - 49 - 2.4.2 Middle access communities (M) - 50 - 2.4.3 Highland communities (H) - 51 - 3 Vulnerability in Achamayo - 53 - 3.1 Results - 53 - 3.1.1 Sustainable Livelihood Vulnerability Index (S-LVI) - 53 - 3.1.2 IPCC Livelihood Vulnerability Index (LVI-IPCC) - 68 - 3.2 Discussion - 71 - 3.2.1 Climate variability and extreme events - 71 - 3.2.2 Human capital - 71 - 3.2.3 Social capital - 71 - 3.2.4 Natural capital - 71 - 3.2.5 Physical capital - 71 - 3.2.6 Financial capital - 71 - 3.2.7 Livelihood strategies following the S-LVI and LVI-IPCC indices - 86 - 3.3 Conclusion - 92 - 4 Agroforestry systems and agricultural droughts - 95 - 4.1 Results - 96 - 4.1.1 Farmers’ experience and perception on climate variability and agricultural droughts - 96 - 4.1.2 Agricultural droughts in the farm household systems - 97 - 4.1.3 Farming forestry systems and land-use decision-making - 102 - 4.1.4 Influence of trees in the soil moisture and yield - 104 - 4.2 Discussion - 110 - 4.2.1 Climate change and agricultural droughts - 110 - 4.2.2 Farm forestry systems and land-use decision-making - 115 - 4.2.3 Influence of trees in the soil moisture and yield - 117 - 4.3 Conclusion - 121 - 5 Modeling small farm production systems: optimization of resource allocation - 123 - 5.1 Methodology - 124 - 5.1.1 Optimization Model - 126 - 5.1.2 Plan of optimization - 128 - 5.1.3 Production systems - 131 - 5.1.4 Constraints - 134 - 5.2 Results - 138 - 5.2.1 Model - 138 - 5.2.2 Interest rates - 142 - 5.2.3 Sensitivity analyses - 146 - 5.3 Discussion - 151 - 5.3.1 Cash flows - 151 - 5.3.2 Model outcomes - 152 - 5.3.3 Interest rates - 155 - 5.3.4 Sensitivity analyses - 159 - 5.4 Conclusion - 169 - 6 Synthesis - 171 - 6.1 Lessons learned - 171 - 6.1.1 Research step I - 172 - 6.1.2 Research step II - 175 - 6.1.3 Research step III - 176 - 6.2 Conclusions & outlook - 179 - 6.2.1 General conclusions - 179 - 6.2.2 Outlook - 181 - References - 185 - Appendix - 199 -Las zonas montañosas, incluyendo la región andina son muy sensibles al cambio climático. Los agricultores de los Andes centrales del Perú están cada vez más expuestos a los efectos de la variabilidad climática. Esta investigación transdisciplinaria utiliza laboratorios de campo (field laboratories), combinando los enfoques de sistemas agrícolas y de medios de vida sostenibles, para llevar a cabo evaluaciones sociales, ecológicas y financieras con el fin de identificar estrategias sostenibles y resilientes para los agricultores andinos de pequeña escala. La primera fase de la investigación caracteriza a los sistemas agrícolas familiares, influenciados por sus contextos biofísicos y socioeconómicos, para lo cual se elaboraron dos índices de vulnerabilidad centrados en la variabilidad del clima, los cinco activos de los medios de vida y los tres componentes de la vulnerabilidad del IPCC. Estos índices muestran las condiciones de alta sensibilidad de la mayoría de las comunidades, con malas condiciones de salud y poco acceso a la infraestructura y a los servicios públicos. La capacidad de respuesta de los agricultores es a menudo limitada por la baja diversidad en las actividades agrícolas y la falta de organización. Posteriormente se identificaron las estrategias de medios de vida sostenibles. Estas incluyen la intensificación en las actividades agrícolas y la intensificación del trabajo no agrícola en las comunidades de zonas bajas y con mejor acceso. En las comunidades con menor acceso y zonas altas la migración temporal es una estrategia de afrontamiento común. Los escenarios sostenibles en estas comunidades incluyen un incremento en las estrategias de diversificación p. ej. a través de un aumento de la biodiversidad agrícola y una mayor proporción de sistemas de producción asociados con árboles. Por otra parte, la segunda fase de la investigación explora las estrategias locales para hacer frente a las sequías agrícolas y evalúa, por medio de métodos de evaluación de recursos naturales, los sistemas agroforestales como alternativa para reducir sus efectos negativos. Afectados principalmente por el aumento en la variación de las precipitaciones, los pequeños agricultores identifican a la diversificación de actividades dentro y fuera de sus parcelas agrícolas como una estrategia de adaptación frente a las sequías agrícolas que reduce la dependencia climática y la covarianza entre las actividades de subsistencia. Dentro de la introducción de variedades de cultivos y pastos más resistentes, como parte de la solución, los agricultores desean la incorporación de árboles en su sistema debido a su influencia positiva en la humedad del suelo y en los rendimientos de los cultivos. La humedad del suelo en sistemas agroforestales con árboles de eucalipto es un 10-20% mayor que en los sistemas agrícolas durante el comienzo de la estación húmeda. Las diferencias en la humedad del suelo durante el final de la estación seca y en el rendimiento de los cultivos de papa no son evidentes entre estos dos sistemas. A pesar de esto, el espacio sin siembra dejado en los sistemas agroforestales redujo la producción agrícola en un 13-17%. La tercera fase de la investigación busca maximizar la eficiencia en la asignación de recursos en los sistemas agrícolas familiares mediante el desarrollo de un modelo de optimización de programación lineal. Esta evaluación financiera respalda la necesidad de actividades adicionales no-agrícolas para agricultores con recursos más escasos. Además, con tasas de interés por debajo del 15%, el modelo siempre incluye a los sistemas de producción forestales y/o agroforestales como parte de las soluciones óptimas. Sin embargo, con el aumento de las tasas de interés, una mayor proporción de tierra se utiliza para cubrir las necesidades básicas del hogar y menos recursos están disponibles para las actividades de acumulación de capital como la silvicultura. Las variaciones introducidas en el modelo muestran que los sistemas de pastoreo son más sensibles a los cambios en los condiciones de producción. Por otro lado, la variación en los salarios de los trabajadores agrícolas y en los precios de los árboles afectan en un menor grado las soluciones óptimas, proporcionando sistemas agrícolas menos sensibles a estos cambios en el mercado. Finalmente, la incorporación de árboles en los sistemas agrícolas ha demostrado ser una estrategia de vida sostenible y resiliente a la variabilidad climática disponible para determinados sistemas agrícolas familiares de la zona de estudio.:1 Introduction - 1 - 1.1 Introduction and justification - 1 - 1.2 Objectives and thesis statements - 2 - 1.3 Outline - 3 - 1.4 Definition of terms - 5 - 1.4.1 Vulnerability - 5 - 1.4.2 Resilience - 7 - 1.4.3 Agroforestry systems - 8 - 1.4.4 Farming system approach - 9 - 1.4.5 Farm household system - 10 - 1.4.6 Sustainable livelihood approach - 10 - 2 Framework and study site - 14 - 2.1 Theoretical framework - 14 - 2.2 Methodological framework - 18 - 2.2.1 Field laboratories - 18 - 2.2.2 Methods - 19 - 2.2.3 Methodology applied in research step I: Vulnerability in Achamayo - 21 - 2.2.4 Methodology applied in research step II: Agroforestry systems and agricultural droughts - 29 - 2.2.5 Methodology applied in research step III: Modeling small farm production systems - 33 - 2.2.6 Selection of case studies - 34 - 2.3 Study area - 35 - 2.3.1 Soils and topography - 35 - 2.3.2 Weather - 37 - 2.3.3 Agro-ecological zones and vegetation - 38 - 2.3.4 Climate change - 40 - 2.3.5 Socioeconomic characteristics - 42 - 2.3.6 Population - 43 - 2.3.7 External determinants - 71 - 2.4 Case studies - 47 - 2.4.1 Lowland communities (L) - 49 - 2.4.2 Middle access communities (M) - 50 - 2.4.3 Highland communities (H) - 51 - 3 Vulnerability in Achamayo - 53 - 3.1 Results - 53 - 3.1.1 Sustainable Livelihood Vulnerability Index (S-LVI) - 53 - 3.1.2 IPCC Livelihood Vulnerability Index (LVI-IPCC) - 68 - 3.2 Discussion - 71 - 3.2.1 Climate variability and extreme events - 71 - 3.2.2 Human capital - 71 - 3.2.3 Social capital - 71 - 3.2.4 Natural capital - 71 - 3.2.5 Physical capital - 71 - 3.2.6 Financial capital - 71 - 3.2.7 Livelihood strategies following the S-LVI and LVI-IPCC indices - 86 - 3.3 Conclusion - 92 - 4 Agroforestry systems and agricultural droughts - 95 - 4.1 Results - 96 - 4.1.1 Farmers’ experience and perception on climate variability and agricultural droughts - 96 - 4.1.2 Agricultural droughts in the farm household systems - 97 - 4.1.3 Farming forestry systems and land-use decision-making - 102 - 4.1.4 Influence of trees in the soil moisture and yield - 104 - 4.2 Discussion - 110 - 4.2.1 Climate change and agricultural droughts - 110 - 4.2.2 Farm forestry systems and land-use decision-making - 115 - 4.2.3 Influence of trees in the soil moisture and yield - 117 - 4.3 Conclusion - 121 - 5 Modeling small farm production systems: optimization of resource allocation - 123 - 5.1 Methodology - 124 - 5.1.1 Optimization Model - 126 - 5.1.2 Plan of optimization - 128 - 5.1.3 Production systems - 131 - 5.1.4 Constraints - 134 - 5.2 Results - 138 - 5.2.1 Model - 138 - 5.2.2 Interest rates - 142 - 5.2.3 Sensitivity analyses - 146 - 5.3 Discussion - 151 - 5.3.1 Cash flows - 151 - 5.3.2 Model outcomes - 152 - 5.3.3 Interest rates - 155 - 5.3.4 Sensitivity analyses - 159 - 5.4 Conclusion - 169 - 6 Synthesis - 171 - 6.1 Lessons learned - 171 - 6.1.1 Research step I - 172 - 6.1.2 Research step II - 175 - 6.1.3 Research step III - 176 - 6.2 Conclusions & outlook - 179 - 6.2.1 General conclusions - 179 - 6.2.2 Outlook - 181 - References - 185 - Appendix - 199 -Hochgebirgsregionen einschließlich der Andenregion sind gegenüber dem Klimawandel sehr empfindlich. Die in den zentralen Anden von Peru lebenden Bauern sind mehr und mehr den Auswirkungen durch Klimaschwankungen ausgesetzt. Diese transdisziplinäre Forschung nutzt Feldlabore, die das System der landwirtschaftlichen Bewirtschaftung und Ansätze zur nachhaltigen Lebensunterhaltssicherung kombinieren, um soziale, ökologische und ökonomische Erhebungen durchzuführen, so dass nachhaltige Livelihood-Strategien für die Kleinbauern in den Anden aufgezeigt werden können. Der erste Forschungsschritt untersucht und charakterisiert die bäuerlichen Haushaltssysteme, die durch ihre biophysikalischen und sozioökonomischen Kontexte beeinflusst sind. Hierfür wurden zwei Vulnerabilitätsindizes herausgearbeitet, die Klimavariabilität und die fünf Güter des Sustainable Livelihood-Konzepts im Fokus haben, sowie die drei Vulnerabilitätskomponenten des Intergovernmental Panel on Climate Change (IPCC). Diese Indizes decken die hochgradige Sensitivität für die meisten Gemeinden auf, aufgrund des schlechten Gesundheitszustandes sowie dem Mangel an Infrastruktur und öffentlichen Dienstleistungen. Die Fähigkeit der Bauern damit umzugehen, ist zumeist begrenzt durch eine geringe Diversität und fehlende Organisation auf den Farmen. Anschließend werden nachhaltige Livelihood-Strategien aufgezeigt. Diese umfassen die Intensivierung der Arbeit in der Landwirtschaft und der Arbeitskraft außerhalb der Landwirtschaft für Gemeinden im Flachland sowie besser erreichbare Gemeinden. In Hochlandgemeinden und Gemeinden die schwer zugänglich sind, ist temporäre Migration eine geläufige Bewältigungsstrategie. Nachhaltige Szenarien in diesen Gemeinden beinhalten eine höhere Anzahl an Diversifizierungsstrategien wie die Steigerung von Agro-Biodiversität und dem Anteil an baumbasierten Produktionssystemen. Forschungsschritt II untersucht lokale Strategien, um die landwirtschaftliche Dürre zu bewältigen und bewertet – mit Hilfe von Naturressourcenbewertungsverfahren – Agroforstsysteme als eine Alternative, um die negativen Auswirkungen der Trockenzeiten zu verringern. Beeinträchtigt durch zunehmende Niederschlagsschwankungen, identifizieren Bauern die Diversifizierung von landwirtschaftlichen und nicht-landwirtschaftlichen Aktivitäten als Anpassungsstrategie bei landwirtschaftliche Dürre, wodurch die Abhängigkeit vom Wetter und die Kovarianz zwischen den Aktivitäten für den Lebensunterhalt reduziert werden kann. Neben der Einführung resistenterer Kultur- und Weidepflanzen, ist die Einbeziehung von Bäumen in das System wünschenswert, aufgrund ihres positiven Einflusses auf die Bodenfeuchte und Erträge. Die Bodenfeuchte in agroforstwirtschaftlichen Systemen mit Eukalyptusbäumen ist während der beginnenden Feuchtperiode 20% höher als in landwirtschaftlichen Systemen. Die Unterschiede der Bodenfeuchte am Ende der Trockenzeit und bezüglich des Kartoffelertrags sind zwischen diesen Systemen nicht markant, obwohl eine Fläche, auf der keine Saat ausgebracht wurde, den landwirtschaftlichen Ertrag in Agroforstsystemen um 13 bis 17% mindert. Forschungsschritt III versucht die Effizienz der Ressourcenzuordnung in Farmhaushaltssystemen zu maximieren, indem ein Optimierungsmodell mit Hilfe der linearen Programmierung entwickelt wird. Diese ökonomische Erhebung unterstreicht die Notwendigkeit zusätzlicher nichtlandwirtschaftlicher Aktivitäten für ressourcenärmere Bauern. Bei Zinsraten unter 15% umfasst das Model baumbasierte Produktionssysteme als einen Teil der optimalen Lösung. Mit steigenden Zinsraten wird jedoch eine größere Bodenfläche dazu verwendet, um die Grundbedürfnisse der Haushalte zu decken und es stehen weniger Ressourcen für Aktivitäten zur Kapitalanhäufung wie Forstwirtschaft zur Verfügung. Die in das Modell involvierten Variationen zeigen, dass Weidesysteme sensibler auf Veränderungen des Produktionsausstoßes reagieren. Schwankungen bei den Löhnen der Farmer und Veränderungen der Baumpreise beeinträchtigen hingegen die optimalen Lösungen weniger. Dadurch sind die landwirtschaftlichen Systeme gegenüber Marktschwankungen weniger anfällig. Abschließend erweist sich, dass – für bestimmte Farmhaushaltssysteme im Untersuchungsgebiet – die Einbeziehung baumbasierter Systeme als nachhaltige und resiliente Livelihood-Strategie angesichts von Klimaschwankungen nützlich ist.:1 Introduction - 1 - 1.1 Introduction and justification - 1 - 1.2 Objectives and thesis statements - 2 - 1.3 Outline - 3 - 1.4 Definition of terms - 5 - 1.4.1 Vulnerability - 5 - 1.4.2 Resilience - 7 - 1.4.3 Agroforestry systems - 8 - 1.4.4 Farming system approach - 9 - 1.4.5 Farm household system - 10 - 1.4.6 Sustainable livelihood approach - 10 - 2 Framework and study site - 14 - 2.1 Theoretical framework - 14 - 2.2 Methodological framework - 18 - 2.2.1 Field laboratories - 18 - 2.2.2 Methods - 19 - 2.2.3 Methodology applied in research step I: Vulnerability in Achamayo - 21 - 2.2.4 Methodology applied in research step II: Agroforestry systems and agricultural droughts - 29 - 2.2.5 Methodology applied in research step III: Modeling small farm production systems - 33 - 2.2.6 Selection of case studies - 34 - 2.3 Study area - 35 - 2.3.1 Soils and topography - 35 - 2.3.2 Weather - 37 - 2.3.3 Agro-ecological zones and vegetation - 38 - 2.3.4 Climate change - 40 - 2.3.5 Socioeconomic characteristics - 42 - 2.3.6 Population - 43 - 2.3.7 External determinants - 71 - 2.4 Case studies - 47 - 2.4.1 Lowland communities (L) - 49 - 2.4.2 Middle access communities (M) - 50 - 2.4.3 Highland communities (H) - 51 - 3 Vulnerability in Achamayo - 53 - 3.1 Results - 53 - 3.1.1 Sustainable Livelihood Vulnerability Index (S-LVI) - 53 - 3.1.2 IPCC Livelihood Vulnerability Index (LVI-IPCC) - 68 - 3.2 Discussion - 71 - 3.2.1 Climate variability and extreme events - 71 - 3.2.2 Human capital - 71 - 3.2.3 Social capital - 71 - 3.2.4 Natural capital - 71 - 3.2.5 Physical capital - 71 - 3.2.6 Financial capital - 71 - 3.2.7 Livelihood strategies following the S-LVI and LVI-IPCC indices - 86 - 3.3 Conclusion - 92 - 4 Agroforestry systems and agricultural droughts - 95 - 4.1 Results - 96 - 4.1.1 Farmers’ experience and perception on climate variability and agricultural droughts - 96 - 4.1.2 Agricultural droughts in the farm household systems - 97 - 4.1.3 Farming forestry systems and land-use decision-making - 102 - 4.1.4 Influence of trees in the soil moisture and yield - 104 - 4.2 Discussion - 110 - 4.2.1 Climate change and agricultural droughts - 110 - 4.2.2 Farm forestry systems and land-use decision-making - 115 - 4.2.3 Influence of trees in the soil moisture and yield - 117 - 4.3 Conclusion - 121 - 5 Modeling small farm production systems: optimization of resource allocation - 123 - 5.1 Methodology - 124 - 5.1.1 Optimization Model - 126 - 5.1.2 Plan of optimization - 128 - 5.1.3 Production systems - 131 - 5.1.4 Constraints - 134 - 5.2 Results - 138 - 5.2.1 Model - 138 - 5.2.2 Interest rates - 142 - 5.2.3 Sensitivity analyses - 146 - 5.3 Discussion - 151 - 5.3.1 Cash flows - 151 - 5.3.2 Model outcomes - 152 - 5.3.3 Interest rates - 155 - 5.3.4 Sensitivity analyses - 159 - 5.4 Conclusion - 169 - 6 Synthesis - 171 - 6.1 Lessons learned - 171 - 6.1.1 Research step I - 172 - 6.1.2 Research step II - 175 - 6.1.3 Research step III - 176 - 6.2 Conclusions & outlook - 179 - 6.2.1 General conclusions - 179 - 6.2.2 Outlook - 181 - References - 18
    • …
    corecore