672 research outputs found

    PROud - a gamification framework based on programming exercises usage data

    Get PDF
    Solving programming exercises is the best way to promote practice in computer programming courses and, hence, to learn a programming language. Meanwhile, programming courses continue to have an high rate of failures and dropouts. The main reasons are related with the inherent domain complexity, the teaching methodologies, and the absence of automatic systems with features such as intelligent authoring, profile-based exercise sequencing, content adaptation, and automatic evaluation on the student’s resolution. At the same time, gamification is being used as an approach to engage learners’ motivations. Despite its success, its implementation is still complex and based on ad-hoc and proprietary solutions. This paper presents PROud as a framework to inject gamification features in computer programming learning environments based on the usage data from programming exercises. This data can be divided into two categories: generic data produced by the learning environment—such as, the number of attempts and the duration that the students took to solve a specific exercise—or code-specific data produced by the assessment tool—such as, code size, use memory, or keyword detection. The data is gathered in cloud storage and can be consumed by the learning environment through the use of a client library that communicates with the server through an established Application Programming Interface (API). With the fetched data, the learning environment can generate new gamification assets (e.g., leaderboards, quests, levels) or enrich content adaptations and recommendations in the inner components such as the sequencing tools. The framework is evaluated on its usefulness in the creation of a gamification asset to present dynamic statistics on specific exercises.info:eu-repo/semantics/publishedVersio

    Personalization, Cognition, and Gamification-based Programming Language Learning: A State-of-the-Art Systematic Literature Review

    Full text link
    Programming courses in computing science are important because they are often the first introduction to computer programming for many students. Many university students are overwhelmed with the information they must learn for an introductory course. The current teacher-lecturer model of learning commonly employed in university lecture halls often results in a lack of motivation and participation in learning. Personalized gamification is a pedagogical approach that combines gamification and personalized learning to motivate and engage students while addressing individual differences in learning. This approach integrates gamification and personalized learning strategies to inspire and involve students while addressing their unique learning needs and differences. A comprehensive literature search was conducted by including 81 studies that were analyzed based on their research design, intervention, outcome measures, and quality assessment. The findings suggest that personalized gamification can enhance student cognition in programming courses by improving motivation, engagement, and learning outcomes. However, the effectiveness of personalized gamification varies depending on various factors, such as the type of gamification elements used, the degree of personalization, and the characteristics of the learners. This paper provides insights into designing and implementing effective personalized gamification interventions in programming courses. The findings could inform educational practitioners and researchers in programming education about the potential benefits of personalized gamification and its implications for educational practice

    Increasing student motivation in computer programming with gamification

    Get PDF
    Games have important motivational power. They take advantage of a set of tools to encourage people to engage with them just for the joy of playing and the possibility to win. While gamification is gaining ground in a lot of areas in our society, its application in education is still an emerging trend. In recent years, gamification has attracted the attention of researchers from different areas such as teaching and learning computer programming. Ever since the first programming languages emerged, the problems inherent to programming teaching and learning have been studied and investigated. The theme is very serious, not only for the important concepts underlying computer science courses but also for reducing the lack of motivation, failure, and abandonment that result from student frustration. In most of these studies and research one factor prevails, lack of student motivation or how to motivate students to learn programming. One way to combat this problem is to use gamification. Using game design elements in non-game contexts is one of the good ways to motivate and encourage students to learn programming. To assess how gamification impacted the learning experience, we compared data from one gamified and non-gamified year. In general, the results show significant improvements in terms of attendance to class, participation, and proactivity. They also suggest that our approach can reduce the high rate of failure grade among students. In conclusion, this case study, we show how the use of concepts related to gamification can improve motivation, passion, beauty, joy, awe, e naturally the succeed in programming

    Teaching and Learning Tools for Introductory Programming in University Courses

    Get PDF
    Difficulties in teaching and learning introductory programming have been studied over the years. The students' difficulties lead to failure, lack of motivation, and abandonment of courses. The problem is more significant in computer courses, where learning programming is essential. Programming is difficult and requires a lot of work from teachers and students. Programming is a process of transforming a mental plan into a computer program. The main goal of teaching programming is for students to develop their skills to create computer programs that solve real problems. There are several factors that can be at the origin of the problem, such as the abstract concepts that programming implies; the skills needed to solve problems; the mental skills needed to decompose problems; many of the students never had the opportunity to practice computational thinking or programming; students must know the syntax, semantics, and structure of a new unnatural language in a short period of time. In this work, we present a set of strategies, included in an application, with the objective of helping teachers and students. Early identification of potential problems and prompt response is critical to preventing student failure and reducing dropout rates. This work also describes a predictive machine learning (neural network) model of student failure based on the student profile, which is built over the course of programming lessons by continuously monitoring and evaluating student activities

    Impact of Gamification on Student Engagement in Graduate Medical Studies

    Get PDF
    Rapid technological advances have created major societal changes, transformed business sectors, and revolutionized enterprises. In contrast, the curricular structure of medical education has remained unchanged for the last 100 years, and, for the most part, medical education has been reluctant to embrace the use of technology. The prevalent pedagogical model is reliant on rote memorization. The conceptual framework that informed this study was the user-centered framework for meaningful gamification. This framework\u27s components are organismic integration theory, situational relevance, situated motivational affordance, and the universal design for learning. This quantitative study focused on key research questions related to identifying whether significant increases occurred over time in cooperative learning, cognitive level, and personal skills \u27the dependent variables\u27 when using a gamified learning method-the independent variable. The validated Student Engagement Survey was used to collect data from second-year medical students in a Southern California medical school, with N = 64. A repeated measures MANOVA with follow-up univariate ANOVAs was used, and statistical results indicated that there were significant differences over time in cooperative learning, cognitive level, and personal skills when using gamified learning methods. This research was conducted over a period of 3 months, divided into 3 Time Periods (TP). For all three variables, significant increases were noticed between TP 1 and TP 2, followed by significant decreases between TP 2 and TP 3. These findings pointed to the fact that more studies are needed to better understand whether certain types of gamification implementations are detrimental to student engagement in medical education, or whether more sound design principles ought to be explored to produce effective gamified learning components that could positively impact student engagement in medical education

    Influence of employer support for professional development on MOOCs enrolment and completion: Results from a cross-course survey

    Get PDF
    Although the potential of open education and MOOCs for professional development is usually recognized, it has not yet been explored extensively. How far employers support non-formal learning is still an open question. This paper presents the findings of a survey-based study which focuses on the influence of employer support for (general) professional development on employees’ use of MOOCs. Findings show that employers are usually unaware that their employees are participating in MOOCs. In addition, employer support for general professional development is positively associated with employees completing MOOCs and obtaining certificates for them. However, the relationship between employer support and MOOC enrollment is less clear: workers who have more support from their employers tend to enroll in either a low or a high number of MOOCs. Finally, the promotion of a minimum of ICT skills by employers is shown to be an effective way of encouraging employee participation in the open education ecosystem.JRC.J.3-Information Societ

    Mobile Robotics

    Get PDF
    The book is a collection of ten scholarly articles and reports of experiences and perceptions concerning pedagogical practices with mobile robotics.“This work is funded by CIEd – Research Centre on Education, project UID/CED/01661/2019, Institute of Education, University of Minho, through national funds of FCT/MCTES-PT.

    Accessibility of Health Data Representations for Older Adults: Challenges and Opportunities for Design

    Get PDF
    Health data of consumer off-the-shelf wearable devices is often conveyed to users through visual data representations and analyses. However, this is not always accessible to people with disabilities or older people due to low vision, cognitive impairments or literacy issues. Due to trade-offs between aesthetics predominance or information overload, real-time user feedback may not be conveyed easily from sensor devices through visual cues like graphs and texts. These difficulties may hinder critical data understanding. Additional auditory and tactile feedback can also provide immediate and accessible cues from these wearable devices, but it is necessary to understand existing data representation limitations initially. To avoid higher cognitive and visual overload, auditory and haptic cues can be designed to complement, replace or reinforce visual cues. In this paper, we outline the challenges in existing data representation and the necessary evidence to enhance the accessibility of health information from personal sensing devices used to monitor health parameters such as blood pressure, sleep, activity, heart rate and more. By creating innovative and inclusive user feedback, users will likely want to engage and interact with new devices and their own data

    Gamification and Advanced Technology to Enhance Motivation in Education

    Get PDF
    This book, entitled “Gamification and Advanced Technology to Enhance Motivation in Education”, contains an editorial and a collection of ten research articles that highlight the use of gamification and other advanced technologies as powerful tools for motivation during learning. Motivation is the driving force behind many human activities, especially learning. Motivated students are ready to make a significant mental effort and use deeper and more effective learning strategies. Numerous studies indicate that playing promotes learning, since when fun pervades the learning process, motivation increases and tension is reduced. Therefore, games can be very powerful tools in the improvement of learning processes from three different and complementary perspectives: as tools for teaching content or skills, as an object of the learning project itself and as a philosophy to be taken into account when designing the training process. Each contributions presented in this book falls into one of these categories; that is to say, they all deal with the use of games or related technologies, and they all study how playing enhances motivation in education
    • …
    corecore