798 research outputs found

    Serious games

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135539/1/sign978.pd

    Allocating Limited Resources to Protect a Massive Number of Targets using a Game Theoretic Model

    Full text link
    Resource allocation is the process of optimizing the rare resources. In the area of security, how to allocate limited resources to protect a massive number of targets is especially challenging. This paper addresses this resource allocation issue by constructing a game theoretic model. A defender and an attacker are players and the interaction is formulated as a trade-off between protecting targets and consuming resources. The action cost which is a necessary role of consuming resource, is considered in the proposed model. Additionally, a bounded rational behavior model (Quantal Response, QR), which simulates a human attacker of the adversarial nature, is introduced to improve the proposed model. To validate the proposed model, we compare the different utility functions and resource allocation strategies. The comparison results suggest that the proposed resource allocation strategy performs better than others in the perspective of utility and resource effectiveness.Comment: 14 pages, 12 figures, 41 reference

    On the Inducibility of Stackelberg Equilibrium for Security Games

    Full text link
    Strong Stackelberg equilibrium (SSE) is the standard solution concept of Stackelberg security games. As opposed to the weak Stackelberg equilibrium (WSE), the SSE assumes that the follower breaks ties in favor of the leader and this is widely acknowledged and justified by the assertion that the defender can often induce the attacker to choose a preferred action by making an infinitesimal adjustment to her strategy. Unfortunately, in security games with resource assignment constraints, the assertion might not be valid; it is possible that the defender cannot induce the desired outcome. As a result, many results claimed in the literature may be overly optimistic. To remedy, we first formally define the utility guarantee of a defender strategy and provide examples to show that the utility of SSE can be higher than its utility guarantee. Second, inspired by the analysis of leader's payoff by Von Stengel and Zamir (2004), we provide the solution concept called the inducible Stackelberg equilibrium (ISE), which owns the highest utility guarantee and always exists. Third, we show the conditions when ISE coincides with SSE and the fact that in general case, SSE can be extremely worse with respect to utility guarantee. Moreover, introducing the ISE does not invalidate existing algorithmic results as the problem of computing an ISE polynomially reduces to that of computing an SSE. We also provide an algorithmic implementation for computing ISE, with which our experiments unveil the empirical advantage of the ISE over the SSE.Comment: The Thirty-Third AAAI Conference on Artificial Intelligenc

    Stackelberg security games: Looking beyond a decade of success

    Get PDF
    corecore