443 research outputs found

    Enhanced dynamic performance of grid feeding distributed generation under variable grid inductance

    Get PDF
    Controlling weak grid-connected systems is very challenging. In transient, frequency and voltage oscillations may lead to voltage and/or frequency stability problems and finally lead to system collapse. During steady-state operation and at the point of common coupling (PCC), voltage degradation and grid voltage background harmonics restrict the inverter's functionality, reduce the power flow capability and cause poor power quality. With weak grid connection, grid impedance variance will contaminate the voltage waveform by harmonics and augment the resonance, destabilizing the inverter operation. In this paper, complete mathematical modeling is carried out and state feedback-plus-integral control is implemented to support the stabilization of the system. The proposed controller is adopted to provide a smooth transient under sudden load change by controlling the injected grid current under different grid inductance values. Furthermore, the proposed control is used to reduce the order and size of the inverter output filter while maintaining system stability. The proposed control has been compared with the conventional proportional integral (PI) controller under different scenarios to validate its effectiveness and to strengthen its implementation as a simple controller for distributed generator applications

    AC-Voltage Harmonic Control for Stand-Alone and Weak-Grid-Tied Converter

    Get PDF

    Effect of State Feedback Coupling on the Design of Voltage Source Inverters for Standalone Applications

    Get PDF
    This Ph.D. thesis aims at investigating the effect of state feedback cross‐coupling decoupling of the capacitor voltage on the dynamics performance of Voltage Source Inverters for standalone microgrids/Uninterruptible Power Supply systems. Computation and PWM delays are the main factors which limit the achievable bandwidth of current regulators in digital implementations. In particular, the performance of state feedback decoupling is degraded because of these delays. Two decoupling techniques aimed at improving the transient response of voltage and current regulators are investigated, named nonideal and ideal capacitor voltage decoupling respectively. In particular, the latter solution consists in leading the capacitor voltage on the state feedback decoupling path in order to compensate for system delays. Practical implementation issues are discussed with reference to both the decoupling techniques. Moreover, different resonant regulators structures for the inner current loop are analysed and compared to investigate which is the most suitable for standalone microgrid applications. A design methodology for the voltage loop, which considers the closed loop transfer functions developed for the inner current loop, is also provided. Proportional resonant voltage controllers tuned at specific harmonic frequencies are designed according to the Nyquist criterion taking into account application requirements. For this purpose, a mathematical expression based on root locus analysis is proposed to find the minimum value of the resonant gain at the fundamental frequency. The exact model of the output LC filter of a three‐phase inverter is derived in the z‐domain. The devised formulation allows the comparison of two techniques based on a lead compensator and Smith predictor structure. These solutions permit the bandwidth of the current regulator to be widened while still achieving good dynamic performance. As a consequence, the voltage regulator can be designed for a wide bandwidth and even mitigates odd harmonics arising with unbalance loads supply. Discrete‐time domain implementation issues of an anti‐wind up scheme are discussed as well, highlighting the limitations of some discretization methods. Experimental tests performed in accordance to Uninterruptible Power Supply standards verify the theoretical analysis

    Complex-based controller for a three-phase inverter with an LCL filter connected to unbalanced grids

    Get PDF
    A new controller for a grid-connected inverter with an LCL filter is proposed in this paper. The system is described by its complex representation, and the controller is designed using the complex root locus method. The complex representation allows a considerable reduction in the order of the system, simplifying the design task and making it possible to use advanced techniques, such as the complex root locus. The new complex controller adds an extra degree of freedom that makes it possible to move the poles of the systems and to improve the stability and speed of response compared with the conventional controls. This paper includes a detailed discussion of the effect of the gains of the controller on the root locus. The proposal is validated with simulation and experimental results.Fil: Doria Cerezo, Arnau. Universidad Politécnica de Catalunya; EspañaFil: Serra, Federico Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Investigaciones en Tecnología Química. Universidad Nacional de San Luis. Facultad de Química, Bioquímica y Farmacia. Instituto de Investigaciones en Tecnología Química; ArgentinaFil: Bodson, Marc. University of Utah; Estados Unido
    • 

    corecore