38,797 research outputs found

    Performance of the Charniak-Lease parser on biological text using different training corpora

    Get PDF
    POS tagging is used as the first step in many NLP workflows, although the accuracy of tag assignment frequently goes unchecked. We hypothesize that changing the training corpora for a parser will affect its POS tagging of a target corpus. To this end we train the Charniak-Lease parser on the WSJ corpus and two biomedical corpora and evaluate its output to MedPost, a POS tagger with a reported 97% accuracy on biomedical text. Our findings indicate that using biomedical training corpora significantly improves performance, but that minor differences in the biomedical training corpora have a significant effect on the correctness of POS tagging. Specifically, the tagging of hyphenated words and verbs was affected. This work suggests that the choice of training corpora is crucial to domain targeted NLP analysis

    A Novel Neural Network Model for Joint POS Tagging and Graph-based Dependency Parsing

    Full text link
    We present a novel neural network model that learns POS tagging and graph-based dependency parsing jointly. Our model uses bidirectional LSTMs to learn feature representations shared for both POS tagging and dependency parsing tasks, thus handling the feature-engineering problem. Our extensive experiments, on 19 languages from the Universal Dependencies project, show that our model outperforms the state-of-the-art neural network-based Stack-propagation model for joint POS tagging and transition-based dependency parsing, resulting in a new state of the art. Our code is open-source and available together with pre-trained models at: https://github.com/datquocnguyen/jPTDPComment: v2: also include universal POS tagging, UAS and LAS accuracies w.r.t gold-standard segmentation on Universal Dependencies 2.0 - CoNLL 2017 shared task test data; in CoNLL 201

    Semantic Tagging with Deep Residual Networks

    Get PDF
    We propose a novel semantic tagging task, sem-tagging, tailored for the purpose of multilingual semantic parsing, and present the first tagger using deep residual networks (ResNets). Our tagger uses both word and character representations and includes a novel residual bypass architecture. We evaluate the tagset both intrinsically on the new task of semantic tagging, as well as on Part-of-Speech (POS) tagging. Our system, consisting of a ResNet and an auxiliary loss function predicting our semantic tags, significantly outperforms prior results on English Universal Dependencies POS tagging (95.71% accuracy on UD v1.2 and 95.67% accuracy on UD v1.3).Comment: COLING 2016, camera ready versio

    An improved neural network model for joint POS tagging and dependency parsing

    Full text link
    We propose a novel neural network model for joint part-of-speech (POS) tagging and dependency parsing. Our model extends the well-known BIST graph-based dependency parser (Kiperwasser and Goldberg, 2016) by incorporating a BiLSTM-based tagging component to produce automatically predicted POS tags for the parser. On the benchmark English Penn treebank, our model obtains strong UAS and LAS scores at 94.51% and 92.87%, respectively, producing 1.5+% absolute improvements to the BIST graph-based parser, and also obtaining a state-of-the-art POS tagging accuracy at 97.97%. Furthermore, experimental results on parsing 61 "big" Universal Dependencies treebanks from raw texts show that our model outperforms the baseline UDPipe (Straka and Strakov\'a, 2017) with 0.8% higher average POS tagging score and 3.6% higher average LAS score. In addition, with our model, we also obtain state-of-the-art downstream task scores for biomedical event extraction and opinion analysis applications. Our code is available together with all pre-trained models at: https://github.com/datquocnguyen/jPTDPComment: 11 pages; In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, to appea
    • …
    corecore