14 research outputs found

    The matching relaxation for a class of generalized set partitioning problems

    Full text link
    This paper introduces a discrete relaxation for the class of combinatorial optimization problems which can be described by a set partitioning formulation under packing constraints. We present two combinatorial relaxations based on computing maximum weighted matchings in suitable graphs. Besides providing dual bounds, the relaxations are also used on a variable reduction technique and a matheuristic. We show how that general method can be tailored to sample applications, and also perform a successful computational evaluation with benchmark instances of a problem in maritime logistics.Comment: 33 pages. A preliminary (4-page) version of this paper was presented at CTW 2016 (Cologne-Twente Workshop on Graphs and Combinatorial Optimization), with proceedings on Electronic Notes in Discrete Mathematic

    A novel mathematical formulation for solving the dynamic and discrete berth allocation problem by using the Bee Colony Optimisation algorithm

    Get PDF
    AbstractBerth allocation is one of the crucial points for efficient management of ports. This problem is complex due to all possible combinations for assigning ships to available compatible berths. This paper focuses on solving the Berth Allocation Problem (BAP) by optimising port operations using an innovative model. The problem analysed in this work deals with the Discrete and Dynamic Berth Allocation Problem (DDBAP). We propose a novel mathematical formulation expressed as a Mixed Integer Linear Programming (MILP) for solving the DDBAP. Furthermore, we adapted a metaheuristic solution approach based on the Bee Colony Optimisation (BCO) for solving large-sized combinatorial BAPs. In order to assess the solution performance and efficiency of the proposed model, we introduce a new set of instances based on real data of the Livorno port (Italy), and a comparison between the BCO algorithm and CPLEX in solving the DDBAP is performed. Additionally, the application of the proposed model to a real berth scheduling (Livorno port data) and a comparison with the Ant Colony Optimisation (ACO) metaheuristic are carried out. Results highlight the feasibility of the proposed model and the effectiveness of BCO when compared to both CPLEX and ACO, achieving computation times that ensure a real-time application of the method

    Optimising discrete dynamic berth allocations in seaports using a Levy Flight based meta-heuristic

    Get PDF
    Seaports play a vital role in our everyday life: they handle 90% of our world trade goods. Improving seaports' efficiency means improving the efficiency of sending and receiving our goods. In seaports, one of the most important and most expensive operations is how to allocate vessels to berths. In this paper, we solve this problem by proposing a new meta-heuristic, which combines the nature-inspired Levy Flight random walk with local search, while taking into account tidal windows. With our algorithm, we meet the following goals: (i) to minimise the cost of all vessels while staying in the port, and (ii) to schedule available berths for the arriving vessels taking into account a multi-tidal planning horizon. In comparison with the state-of-the-art exact method using commercial solver and a competitive heuristic, the computational results prove our approach guarantees feasibility of solutions for all the problem instances and is able to find good solutions in a short amount of time, especially for large-scale instances. We also compare our results to an existing state-of-the-art Particle Swarm Optimisation and our work produces significantly better performances on all the test instances

    Internet of Things in urban waste collection

    Get PDF
    Nowadays, the waste collection management has an important role in urban areas. This paper faces this issue and proposes the application of a metaheuristic for the optimization of a weekly schedule and routing of the waste collection activities in an urban area. Differently to several contributions in literature, fixed periodic routes are not imposed. The results significantly improve the performance of the company involved, both in terms of resources used and costs saving

    New formulations and solutions for the strategic berth template problem

    Get PDF
    This paper develops new formulations for the Strategic Berth Template Problem, which combines strategic and operational decisions for medium-term berth planning of a given set of cyclically calling ships. The strategic decisions determine the ship calls that will be served, whereas the operational ones establish the berth template that will be applied in a cyclic fashion in the planning horizon. The proposed formulations use binary variables that classify served ships depending on whether or not their service starts in their arrival cycle or in the next one. This helps modeling the problem, since a closed linear expression can be obtained for the waiting times. Constraints imposing that the availability of the berths is respected at each time period can be derived by defining additional binary variables pointing to the starting service times of the served ships. Aggregating such variables over all berths leads to a relaxed formulation, which can be solved in remarkably small computing times. Furthermore, the solution of an auxiliary subproblem produces feasible solutions to the original problem as well as a simple optimality check. Disaggregating the initial service time variables for the different berths leads to a valid formulation. Numerical results from extensive computational tests over a set of benchmark instances from the literature are presented and analyzed. The obtained results assess the excellent performance of the proposed formulations, which outperform existing ones. (c) 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )This research was partially funded by the Spanish Ministry of Economy and Competitiveness and ERDF funds [Grant PID2019-105824GB-I0 0 (MINECO/FEDER) ] . This support is gratefully ac-knowledged. The authors are thankful to Eduardo Lalla-Ruiz who kindly made available to us the set of benchmark instances

    Barge Prioritization, Assignment, and Scheduling During Inland Waterway Disruption Responses

    Get PDF
    Inland waterways face natural and man-made disruptions that may affect navigation and infrastructure operations leading to barge traffic disruptions and economic losses. This dissertation investigates inland waterway disruption responses to intelligently redirect disrupted barges to inland terminals and prioritize offloading while minimizing total cargo value loss. This problem is known in the literature as the cargo prioritization and terminal allocation problem (CPTAP). A previous study formulated the CPTAP as a non-linear integer programming (NLIP) model solved with a genetic algorithm (GA) approach. This dissertation contributes three new and improved approaches to solve the CPTAP. The first approach is a decomposition based sequential heuristic (DBSH) that reduces the time to obtain a response solution by decomposing the CPTAP into separate cargo prioritization, assignment, and scheduling subproblems. The DBSH integrates the Analytic Hierarchy Process and linear programming to prioritize cargo and allocate barges to terminals. Our findings show that compared to the GA approach, the DBSH is more suited to solve large sized decision problems resulting in similar or reduced cargo value loss and drastically improved computational time. The second approach formulates CPTAP as a mixed integer linear programming (MILP) model improved through the addition of valid inequalities (MILP\u27). Due to the complexity of the NLIP, the GA results were validated only for small size instances. This dissertation fills this gap by using the lower bounds of the MILP\u27 model to validate the quality of all prior GA solutions. In addition, a comparison of the MILP\u27 and GA solutions for several real world scenarios show that the MILP\u27 formulation outperforms the NLIP model solved with the GA approach by reducing the total cargo value loss objective. The third approach reformulates the MILP model via Dantzig-Wolfe decomposition and develops an exact method based on branch-and-price technique to solve the model. Previous approaches obtained optimal solutions for instances of the CPTAP that consist of up to five terminals and nine barges. The main contribution of this new approach is the ability to obtain optimal solutions of larger CPTAP instances involving up to ten terminals and thirty barges in reasonable computational time

    Berth Scheduling at Seaports: Meta-Heuristics and Simulation

    Get PDF
    This research aims to develop realistic solutions to enhance the efficiency of port operations. By conducting a comprehensive literature review on logistic problems at seaports, some important gaps have been identified for the first time. The following contributions are made in order to close some of the existing gaps. Firstly, this thesis identifies important realistic features which have not been well-studied in current academic research of berth planning. This thesis then aims to solve a discrete dynamic Berth allocation problem (BAP) while taking tidal constraints into account. As an important feature when dealing with realistic scheduling, changing tides have not been well-considered in BAPs. To the best of our knowledge, there is no existing work using meta-heuristics to tackle the BAP with multiple tides that can provide feasible solutions for all the test cases. We propose one single-point meta-heuristic and one population-based meta-heuristic. With our algorithms, we meet the following goals: (i) to minimise the cost of all vessels while staying in the port, and (ii) to schedule available berths for the arriving vessels taking into account a multi-tidal planning horizon. Comprehensive experiments are conducted in order to analyse the strengths and weaknesses of the algorithms and compare with both exact and approximate methods. Furthermore, lacking tools for examining existing algorithms for different optimisation problems and simulating real-world scenarios is identified as another gap in this study. This thesis develops a discrete-event simulation framework. The framework is able to generate test cases for different problems and provide visualisations. With this framework, contributions include assessing the performance of different algorithms for optimisation problems and benchmarking optimisation problems

    Metaheuristic approach for solving one class of optimization problems in transport

    Get PDF
    Problem dodele vezova obuhvata nekoliko važnih odluka koje je potrebno doneti da bi se dosegla maksimalna efikasnost luke. U luci, menadžeri terminala treba da dodele slobodne vezove brodovima koji su najavili dolazak...Berth Allocation Problem incorporates some of the most important decisions that have to be made in order to achieve maximum eciency in a port. Terminal manager of a port has to assign incoming vessels to the available berths, where they will be loaded/unloaded in such a way that some objective function is optimized. It is well known that even the simpler variants of Berth Allocation Problem are NP-hard, and thus, metaheuristic approaches are more convenient than exact methods, because they provide high quality solutions in reasonable computational time. This study considers two variants of the Berth Allocation Problem: Minimum Cost Hybrid Berth AllocationProblem (MCHBAP) and Dynamic Minimum Cost Hybrid Berth AllocationProblem (DMCHBAP), both with xed handling times of vessels. Objective function to be minimized consists of the following components: costs of positioning, speeding up or waiting of vessels, and tardiness of completion for all vessels. Having in mind that the speed of nding high-quality solutions is of crucial importance for designing an ecient and reliable decision support system in container terminal, metaheuristic methods represent the natural choice when dealing with MCHBAP and DMCHBAP. This study examines the following metaheuristic approaches for both types of a given problem: two variants of the Bee Colony Optimization (BCO), two variants of the Evolutionary Algorithm (EA), and four variants of Variable Neighborhood Search (VNS). All metaheuristics are evaluated and compared against each other and against exact methods integrated in commercial CPLEX solver on real-life instances from the literature and randomly generated instances of higher dimensions. The analysis of the obtained results shows that on real-life instances all metaheuristics were able to nd optimal solutions in short execution times. Randomly generated instances were out of reach for exact solver due to time or memory limits, while metaheuristics easily provided high-quality solutions in short CPU time in each run. The conducted computational analysis indicates that metaheuristics represent a promising approach for MCHBAP and similar problems in maritime transportation..

    Operational Research: Methods and Applications

    Get PDF
    Throughout its history, Operational Research has evolved to include a variety of methods, models and algorithms that have been applied to a diverse and wide range of contexts. This encyclopedic article consists of two main sections: methods and applications. The first aims to summarise the up-to-date knowledge and provide an overview of the state-of-the-art methods and key developments in the various subdomains of the field. The second offers a wide-ranging list of areas where Operational Research has been applied. The article is meant to be read in a nonlinear fashion. It should be used as a point of reference or first-port-of-call for a diverse pool of readers: academics, researchers, students, and practitioners. The entries within the methods and applications sections are presented in alphabetical order. The authors dedicate this paper to the 2023 Turkey/Syria earthquake victims. We sincerely hope that advances in OR will play a role towards minimising the pain and suffering caused by this and future catastrophes

    Operational research:methods and applications

    Get PDF
    Throughout its history, Operational Research has evolved to include a variety of methods, models and algorithms that have been applied to a diverse and wide range of contexts. This encyclopedic article consists of two main sections: methods and applications. The first aims to summarise the up-to-date knowledge and provide an overview of the state-of-the-art methods and key developments in the various subdomains of the field. The second offers a wide-ranging list of areas where Operational Research has been applied. The article is meant to be read in a nonlinear fashion. It should be used as a point of reference or first-port-of-call for a diverse pool of readers: academics, researchers, students, and practitioners. The entries within the methods and applications sections are presented in alphabetical order
    corecore