15,341 research outputs found

    Network Planning for Dual Residential-Business Exploitation of Next-Generation Passive Optical Networks to Provide Symmetrical 1 Gb/s Services

    Get PDF
    Demand for high-speed access for business and residential subscribers has grown rapidly in recent years; thus, service providers need to offer cost-effective solutions to cover this demand. Convergence within the same infrastructure for clients requiring different service levels may have benefits in terms of cost, but their respective service-level specifications need to be guaranteed. This article compares different flavors of next-generation passive optical networks (PONs), namely, gigabit PON (GPON), 10-gigabit PON (XG-PON), time and wavelength division multiplexing PON (TWDM-PON), and wavelength division multiplexing PON (WDM-PON), and evaluates which one can provide 1 Gb/s symmetrical service at the more affordable cost when there is a mix of residential and business subscribers. Results show that the recommended technology depends on the percentage of business subscribers in the scenario.The authors would like to acknowledge the support of the Spanish projects CRAMnet (grant no. TEC2012-38362-C03-01), Elastic Networks (grant no. TEC2015-71932-REDT), TIGRE-5CM (grant no. S2013/ICE-2919), and Fed4FIRE EU Project 318389 for the development of this work. The views expressed in this article are those of the authors and do not reflect the opinion of the authors’ employers, specifically in terms of architectural and engineering design or experience.European Community's Seventh Framework Progra

    Energy efficiency analysis of next-generation passive optical network (NG-PON) technologies in a major city network

    Get PDF
    Ever-increasing bandwidth demands associated with mobile backhaul, content-rich services and the convergence of residential and business access will drive the need for next-generation passive optical networks (NG-PONs) in the long term. At the same time, there is a growing interest in reducing the energy consumption and the associated cost of the access network. In this paper, we consider a deployment scenario in a major city to assess the energy efficiency of various PON solutions from a telecom operator's perspective. We compare five next-generation technologies to a baseline GPON deployment offering similar bandwidths and Quality of Service (QoS) for best-effort high speed connectivity services. We follow two approaches:first, we consider a fixed split ratio (1:64) in an existing Optical Distribution Network (ODN); next, we consider an upgraded ODN with an optimized split ratio for the specific bandwidth and QoS values. For medium bandwidth demands, our results show that legacy PONs can be upgraded to 10G PON without any ODN modification. For future applications that may require access rates up to 1 Gb/s, NG-PON2 technologies with higher split ratios and increased reach become more interesting systems, offering the potential for both increased energy efficiency and node consolidation

    SDN enabled dynamically reconfigurable high capacity optical access architecture for converged services

    Get PDF
    Dynamically reconfigurable time-division multiplexing (TDM) dense wavelength division multiplexing (DWDM) long-reach passive optical networks (PONs) can support the reduction of nodes and network interfaces by enabling a fully meshed flat optical core. In this paper we demonstrate the flexibility of the TDM-DWDM PON architecture, which can enable the convergence of multiple service types on a single physical layer. Heterogeneous services and modulation formats, i.e. residential 10G PON channels, business 100G dedicated channel and wireless fronthaul, are demonstrated co-existing on the same long reach TDM-DWDM PON system, with up to 100km reach, 512 users and emulated system load of 40 channels, employing amplifier nodes with either erbium doped fiber amplifiers (EDFAs) or semiconductor optical amplifiers (SOAs). For the first time end-to-end software defined networking (SDN) management of the access and core network elements is also implemented and integrated with the PON physical layer in order to demonstrate two service use cases: a fast protection mechanism with end-to-end service restoration in the case of a primary link failure; and dynamic wavelength allocation (DWA) in response to an increased traffic demand

    Il PON Reti e MobilitĂ  e gli obiettivi di SostenibilitĂ : il ruolo del Piano di Monitoraggio Ambientale

    Get PDF
    The National Operative Program (PON) “Reti e mobilità” has been approved by European Commission on the 7th of December 2007. The strategic approach of the PON, exclusively devoted to the socalled “convergence regions” of Italy (Campania, Calabria, Sicilia, Puglia), aims to: 1. improve the modal balance by an economic, social and environmental perspective; 2. develop the inter-modality in order to move towards the integration of convergence area into the network of the European transport system; 3. improve the mobility and the accessibility, also to reduce the traffic congestion; 4. increase the efficiency related to security standards, to management techniques and to the quality of transportation services in the sector of freight; 5. guarantee the reduction of environmental impacts through a global improvement of the efficiency of the transport systems. In such a way it is clear that the PON “Reti e mobilità” takes greatly into account the Sustainability principles recognized at European scale as attested by the budget, namely over the 70% of the entire fund, associated with low-impacts infrastructures (railways and harbors). The PON has been submitted to the SEA procedure, following what the 2001/42/CE Directive establishes. The Environmental Report of PON devotes great attention to the monitoring activity as shown by the reported recommendation about the need for adequate measures for the environmental monitoring, also in order to apply corrective measures during the implementation of the program. By this point of view, a first and important step has been the elaboration of the “Environmental Monitoring Plan” (EMP) that represents the main methodological document for the following implementation of the monitoring activity. This paper, after a brief presentation of the program and of the objectives of Sustainability that the Programs aims to pursue through the realization of specific projects, is devoted to introduce the Environmental Monitoring Plan of the PON that has been approved by the Ministry of the Infrastructures and Transport -in charge as Management Authority of the PON- in February 2011. In detail, the PMA represents the tool through which, the Management Authority, that has specific responsibilities and functions in terms of monitoring and environmental assessment of the program, controls the significant impacts on the environment caused by the implementation of the PON and verify the level of achievement of the established objectives of environmental sustainability. The structure of EMP is based on three main aspects: 1) the adoption of the results of other interesting experiences carried out by experts institutions on the topic; 2) an approach favoring the creation of an “integrated” monitoring system with the others Operative Programs activated at regional scale; 3) the implementation of a cooperation and shared process with all the directly-involved actors

    WDM/TDM PON bidirectional networks single-fiber/wavelength RSOA-based ONUs layer 1/2 optimization

    Get PDF
    This Thesis proposes the design and the optimization of a hybrid WDM/TDM PON at the L1 (PHY) and L2 (MAC) layers, in terms of minimum deployment cost and enhanced performance for Greenfield NGPON. The particular case of RSOA-based ONUs and ODN using a single-fibre/single-wavelength is deeply analysed. In this WDM/TDM PON relevant parameters are optimized. Special attention has been given at the main noise impairment in this type of networks: the Rayleigh Backscattering effect, which cannot be prevented. To understand its behaviour and mitigate its effects, a novel mathematical model for the Rayleigh Backscattering in burst mode transmission is presented for the first time, and it has been used to optimize the WDM/TDM RSOA based PON. Also, a cost-effective, simple design SCM WDM/TDM PON with rSOA-based ONU, was optimized and implemented. This prototype was successfully tested showing high performance, robustness, versatility and reliability. So, the system is able to give coverage up to 1280 users at 2.5 Gb/s / 1.25 Gb/s downstream/upstream, over 20 Km, and being compatible with the GPON ITU-T recommendation. This precedent has enabled the SARDANA network to extend the design, architecture and capabilities of a WDM/TDM PON for a long reach metro-access network (100 km). A proposal for an agile Transmission Convergence sub-layer is presented as another relevant contribution of this work. It is based on the optimization of the standards GPON and XG-PON (for compatibility), but applied to a long reach metro-access TDM/WDM PON rSOA-based network with higher client count. Finally, a proposal of physical implementation for the SARDANA layer 2 and possible configurations for SARDANA internetworking, with the metro network and core transport network, are presented

    Adaptive multi-gate polling with void filling for long-reach passive optical networks

    Get PDF

    Access and metro network convergence for flexible end-to-end network design

    Get PDF
    This paper reports on the architectural, protocol, physical layer, and integrated testbed demonstrations carried out by the DISCUS FP7 consortium in the area of access - metro network convergence. Our architecture modeling results show the vast potential for cost and power savings that node consolidation can bring. The architecture, however, also recognizes the limits of long-reach transmission for low-latency 5G services and proposes ways to address such shortcomings in future projects. The testbed results, which have been conducted end-to-end, across access - metro and core, and have targeted all the layers of the network from the application down to the physical layer, show the practical feasibility of the concepts proposed in the project

    Dynamic Bandwidth Allocation in Heterogeneous OFDMA-PONs Featuring Intelligent LTE-A Traffic Queuing

    Get PDF
    This work was supported by the ACCORDANCE project, through the 7th ICT Framework Programme. This is an Accepted Manuscript of an article accepted for publication in Journal of Lightwave Technology following peer review. © 2014 IEEE Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.A heterogeneous, optical/wireless dynamic bandwidth allocation framework is presented, exhibiting intelligent traffic queuing for practically controlling the quality-of-service (QoS) of mobile traffic, backhauled via orthogonal frequency division multiple access–PON (OFDMA-PON) networks. A converged data link layer is presented between long term evolution-advanced (LTE-A) and next-generation passive optical network (NGPON) topologies, extending beyond NGPON2. This is achieved by incorporating in a new protocol design, consistent mapping of LTE-A QCIs and OFDMA-PON queues. Novel inter-ONU algorithms have been developed, based on the distribution of weights to allocate subcarriers to both enhanced node B/optical network units (eNB/ONUs) and residential ONUs, sharing the same infrastructure. A weighted, intra-ONU scheduling mechanism is also introduced to control further the QoS across the network load. The inter and intra-ONU algorithms are both dynamic and adaptive, providing customized solutions to bandwidth allocation for different priority queues at different network traffic loads exhibiting practical fairness in bandwidth distribution. Therefore, middle and low priority packets are not unjustifiably deprived in favor of high priority packets at low network traffic loads. Still the protocol adaptability allows the high priority queues to automatically over perform when the traffic load has increased and the available bandwidth needs to be rationally redistributed. Computer simulations have confirmed that following the application of adaptive weights the fairness index of the new scheme (representing the achieved throughput for each queue), has improved across the traffic load to above 0.9. Packet delay reduction of more than 40ms has been recorded as a result for the low priority queues, while high priories still achieve sufficiently low packet delays in the range of 20 to 30msPeer reviewe

    Subsystems for future access networks

    Get PDF
    Current evolution and tendencies of Telecom Networks in general and more specifically optical Metro and Access Networks and their convergence are reported. Based on this evolution, a set of research lines are foreseen regarding subsystems and devices as: high speed optical sources, modulators and receivers, for the next generation of Passive Optical Networks. The ICT project EURO-FOS is achieving European level cooperative research among academia and industry, enabling future telecommunication networks
    • …
    corecore