200 research outputs found

    POMDP-based online target detection and recognition for autonomous UAVs

    Get PDF
    This paper presents a target detection and recognition mission by an autonomous Unmanned Aerial Vehicule (UAV) modeled as a Partially Observable Markov Decision Process (POMDP). The POMDP model deals in a single framework with both perception actions (controlling the camera's view angle), and mission actions (moving between zones and flight levels, landing) needed to achieve the goal of the mission, i.e. landing in a zone containing a car whose model is recognized as a desired target model with sufficient belief. We explain how we automatically learned the probabilistic observation POMDP model from statistical analysis of the image processing algorithm used on-board the UAV to analyze objects in the scene. We also present our "optimize-while-execute" framework, which drives a POMDP sub-planner to optimize and execute the POMDP policy in parallel under action duration constraints, reasoning about the future possible execution states of the robotic system. Finally, we present experimental results, which demonstrate that Artificial Intelligence techniques like POMDP planning can be successfully applied in order to automatically control perception and mission actions hand-in-hand for complex time-constrained UAV missions

    Multi-target detection and recognition by UAVs using online POMDPs

    Get PDF
    This paper tackles high-level decision-making techniques for robotic missions, which involve both active sensing and symbolic goal reaching, under uncertain probabilistic environments and strong time constraints. Our case study is a POMDP model of an online multi-target detection and recognition mission by an autonomous UAV.The POMDP model of the multi-target detection and recognition problem is generated online from a list of areas of interest, which are automatically extracted at the beginning of the flight from a coarse-grained high altitude observation of the scene. The POMDP observation model relies on a statistical abstraction of an image processing algorithm's output used to detect targets. As the POMDP problem cannot be known and thus optimized before the beginning of the flight, our main contribution is an ``optimize-while-execute'' algorithmic framework: it drives a POMDP sub-planner to optimize and execute the POMDP policy in parallel under action duration constraints. We present new results from real outdoor flights and SAIL simulations, which highlight both the benefits of using POMDPs in multi-target detection and recognition missions, and of our`optimize-while-execute'' paradigm

    Planning for perception and perceiving for decision: POMDP-like online target detection and recognition for autonomous UAVs

    Get PDF
    This paper studies the use of POMDP-like techniques to tackle an online multi-target detection and recognition mission by an autonomous rotorcraft UAV. Such robotics missions are complex and too large to be solved off-line, and acquiring information about the environment is as important as achieving some symbolic goals. The POMDP model deals in a single framework with both perception actions (controlling the camera's view angle), and mission actions (moving between zones and flight levels, landing) needed to achieve the goal of the mission, i.e. landing in a zone containing a car whose model is recognized as a desired target model with sufficient belief. We explain how we automatically learned the probabilistic observation POMDP model from statistical analysis of the image processing algorithm used on-board the UAV to analyze objects in the scene. We also present our "optimize-while-execute" framework, which drives a POMDP sub-planner to optimize and execute the POMDP policy in parallel under action duration constraints, reasoning about the future possible execution states of the robotic system. Finally, we present experimental results, which demonstrate that Artificial Intelligence techniques like POMDP planning can be successfully applied in order to automatically control perception and mission actions hand-in-hand for complex time-constrained UAV missions

    Obstacle-aware Adaptive Informative Path Planning for UAV-based Target Search

    Full text link
    Target search with unmanned aerial vehicles (UAVs) is relevant problem to many scenarios, e.g., search and rescue (SaR). However, a key challenge is planning paths for maximal search efficiency given flight time constraints. To address this, we propose the Obstacle-aware Adaptive Informative Path Planning (OA-IPP) algorithm for target search in cluttered environments using UAVs. Our approach leverages a layered planning strategy using a Gaussian Process (GP)-based model of target occupancy to generate informative paths in continuous 3D space. Within this framework, we introduce an adaptive replanning scheme which allows us to trade off between information gain, field coverage, sensor performance, and collision avoidance for efficient target detection. Extensive simulations show that our OA-IPP method performs better than state-of-the-art planners, and we demonstrate its application in a realistic urban SaR scenario.Comment: Paper accepted for International Conference on Robotics and Automation (ICRA-2019) to be held at Montreal, Canad

    A Decision-theoretic Approach to Detection-based Target Search with a UAV

    Full text link
    Search and rescue missions and surveillance require finding targets in a large area. These tasks often use unmanned aerial vehicles (UAVs) with cameras to detect and move towards a target. However, common UAV approaches make two simplifying assumptions. First, they assume that observations made from different heights are deterministically correct. In practice, observations are noisy, with the noise increasing as the height used for observations increases. Second, they assume that a motion command executes correctly, which may not happen due to wind and other environmental factors. To address these, we propose a sequential algorithm that determines actions in real time based on observations, using partially observable Markov decision processes (POMDPs). Our formulation handles both observations and motion uncertainty and errors. We run offline simulations and learn a policy. This policy is run on a UAV to find the target efficiently. We employ a novel compact formulation to represent the coordinates of the drone relative to the target coordinates. Our POMDP policy finds the target up to 3.4 times faster when compared to a heuristic policy.Comment: Published in IEEE IROS 2017. 6 page

    Minimum time search in uncertain dynamic domains with complex sensorial platforms

    Get PDF
    The minimum time search in uncertain domains is a searching task, which appears in real world problems such as natural disasters and sea rescue operations, where a target has to be found, as soon as possible, by a set of sensor-equipped searchers. The automation of this task, where the time to detect the target is critical, can be achieved by new probabilistic techniques that directly minimize the Expected Time (ET) to detect a dynamic target using the observation probability models and actual observations collected by the sensors on board the searchers. The selected technique, described in algorithmic form in this paper for completeness, has only been previously partially tested with an ideal binary detection model, in spite of being designed to deal with complex non-linear/non-differential sensorial models. This paper covers the gap, testing its performance and applicability over different searching tasks with searchers equipped with different complex sensors. The sensorial models under test vary from stepped detection probabilities to continuous/discontinuous differentiable/non-differentiable detection probabilities dependent on distance, orientation, and structured maps. The analysis of the simulated results of several static and dynamic scenarios performed in this paper validates the applicability of the technique with different types of sensor models

    Coordinating human-UAV teams in disaster response

    No full text
    We consider a disaster response scenario where emergency responders have to complete rescue tasks in dynamic and uncertain environment with the assistance of multiple UAVs to collect information about the disaster space. To capture the uncertainty and partial observability of the domain, we model this problem as a POMDP. However, the resulting model is computationally intractable and cannot be solved by most existing POMDP solvers due to the large state and action spaces. By exploiting the problem structure we propose a novel online planning algorithm to solve this model. Specifically, we generate plans for the responders based on Monte-Carlo simulations and compute actions for the UAVs according to the value of information. Our empirical results confirm that our algorithm significantly outperforms the state-of-the-art both in time and solution quality
    corecore