45,668 research outputs found

    Well-defined homopolypeptides, copolypeptides, and hybrids of Poly(l-proline)

    Get PDF
    l-Proline is the only, out of 20 essential, amino acid that contains a cyclized substituted α-amino group (is formally an imino acid), which restricts its conformational shape. The synthesis of well-defined homo- and copolymers of l-proline has been plagued either by the low purity of the monomer or the inability of most initiating species to polymerize the corresponding N-carboxy anhydride (NCA) because they require a hydrogen on the 3-N position of the five-member ring of the NCA, which is missing. Herein, highly pure l-proline NCA was synthesized by using the Boc-protected, rather than the free amino acid. The protection of the amine group as well as the efficient purification method utilized resulted in the synthesis of highly pure l-proline NCA. The high purity of the monomer and the use of an amino initiator, which does not require the presence of the 3-N hydrogen, led for the first time to well-defined poly(l-proline) (PLP) homopolymers, poly(ethylene oxide)-b-poly(l-proline), and poly(l-proline)-b-poly(ethylene oxide)-b-poly(l-proline) hybrids, along with poly(γ-benzyl-l-glutamate)-b-poly(l-proline) and poly(Boc-l-lysine)-b-poly(l-proline) copolypeptides. The combined characterization (NMR, FTIR, and MS) that results for the l-proline NCA revealed its high purity. In addition, all synthesized polymers exhibit high molecular and compositional homogeneity

    Mutational analysis of human profilin I reveals a second PI(4,5)-P2 binding site neighbouring the poly(L-proline) binding site

    Get PDF
    Background: Profilin is a small cytoskeletal protein which interacts with actin, proline-rich proteins and phosphatidylinositol 4,5-bisphosphate (PI(4,5)-P-2). Crystallography, NMR and mutagenesis of vertebrate profilins have revealed the amino acid residues that are responsible for the interactions with actin and poly(L-proline) peptides. Although Arg88 of human profilin I was shown to be involved in PI(4,5)-P-2-binding, it was suggested that carboxy terminal basic residues may be involved as well. Results : Using site directed mutagenesis we have refined the PI(4,5)-P-2 binding site of human profilin I. For each mutant we assessed the stability and studied the interactions with actin, a proline-rich peptide and PI(4,5)-P-2 micelles. We identified at least two PI(4,5)-P-2-binding regions in human profilin I. As expected, one region comprises Arg88 and overlaps with the actin binding site. The second region involves Arg136 in the carboxy terminal helix and neighbours the poly(L-proline) binding site. In addition, we show that adding a small protein tag to the carboxy terminus of profilin strongly reduces binding to poly(L-proline), suggesting local conformational changes of the carboxy terminal a-helix may have dramatic effects on ligand binding. Conclusions : The involvement of the two terminal a-helices of profilin in ligand binding imposes important structural constraints upon the functions of this region. Our data suggest a model in which the competitive interactions between PI(4,5)-P-2 and actin and PI(4,5)-P-2 and poly(L-proline) regulate profilin functions

    High-Resolution, Real-Space Imaging of Conformational Structures of Poly-L-Proline Helixes

    Get PDF
    In 1954, Edsall postulated that the imino-acid proline, which is a frequently found constituent of protein molecules, is a key determinant to the three-dimensional architecture of proteins. It not only should play a fundamental role in stabilizing helical structures of polypeptides, it should allow for sharp bends and even for a complete reversal of the direction of a helix looping back on itself. No direct evidence has yet been published to prove this prediction. Using scanning tunneling microscopy, we have presented high-resolution, real-space images of two conformations of poly-L-proline, where one structure clearly exhibits the predicted 180° back-folding behavior. The measured length, 1.89 nm, of the repeating unit cells agrees with available X-ray data for poly-L-proline I with cis-peptide bonds. We further observe aggregated poly-L-proline II, consisting of highly-ordered, periodically and parallel-linked trans-peptide chains which are 2.4 nm apart from each other. Stacking of these aggregates with their orientation rotated by 90° is also observed

    Testis-expressed profilins 3 and 4 show distinct functional characteristics and localize in the acroplaxome-manchette complex in spermatids

    Get PDF
    Background Multiple profilin isoforms exist in mammals; at least four are expressed in the mammalian testis. The testis-specific isoforms profilin-3 (PFN3) and profilin-4 (PFN4) may have specialized roles in spermatogenic cells which are distinct from known functions fulfilled by the somatic profilins, profilin-1 (PFN1) and profilin-2 (PFN2). Results Ligand interactions and spatial distributions of PFN3 and PFN4 were compared by biochemical, molecular and immunological methods; PFN1 and PFN2 were employed as controls. β-actin, phosphoinositides, poly-L-proline and mDia3, but not VASP, were confirmed as in vitro interaction partners of PFN3. In parallel experiments, PFN4 bound to selected phosphoinositides but not to poly-L-proline, proline-rich proteins, or actin. Immunofluorescence microscopy of PFN3 and PFN4 revealed distinct subcellular locations in differentiating spermatids. Both were associated first with the acroplaxome and later with the transient manchette. Predicted 3D structures indicated that PFN3 has the actin-binding site conserved, but retains only approximately half of the common poly-L-proline binding site. PFN4, in comparison, has lost both, polyproline and actin binding sites completely, which is well in line with the experimental data. Conclusion The testis-specific isoform PFN3 showed major hallmarks of the well characterized somatic profilin isoforms, albeit with distinct binding affinities. PFN4, on the other hand, did not interact with actin or polyproline in vitro. Rather, it seemed to be specialized for phospholipid binding, possibly providing cellular functions which are distinct from actin dynamics regulation

    Redetermination of poly[μ-chlorido-hepta­chlorido-μ3-l-proline-μ2-l-proline-tetra­mercury(II)]

    Get PDF
    The asymmetric unit of the title compound, [Hg4Cl8(C5H9NO2)2]n, consists of four HgCl2 units and two L-proline ligands in the zwitterionic form. In each HgCl2 unit, the HgII ion is strongly bonded to two Cl atoms, and the HgII ions in two of the HgCl2 units are chelated by O atoms of two l-proline ligands, with one strong and one weak Hg—O bond. In the crystal structure, HgCl2 and L-proline units are linked to form an extended chain along the a axis. The chain structure is further stabilized by N—H⋯Cl hydrogen bonds, and the chains are arranged in layers parallel to the ab plane. The structure of the title compound was originally determined by Ehsan, Malik & Haider [(1996). J. Banglad. Acad. Sci. 20, 175] but no three-dimensional coordinates are available

    Differential hydrophobicity drives self-assembly in Huntington's disease

    Full text link
    Identifying the driving forces and the mechanism of association of huntingtin-exon1, a close marker for the progress of Huntington's disease, is an important prerequisite towards finding potential drug targets, and ultimately a cure. We introduce here a modelling framework based on a key analogy of the physico-chemical properties of the exon1 fragment to block copolymers. We use a systematic mesoscale methodology, based on Dissipative Particle Dynamics, which is capable of overcoming kinetic barriers, thus capturing the dynamics of significantly larger systems over longer times than considered before. Our results reveal that the relative hydrophobicity of the poly-glutamine block as compared to the rest of the (proline-based) exon1 fragment, ignored to date, constitutes a major factor in the initiation of the self-assembly process. We find that the assembly is governed by both the concentration of exon1 and the length of the poly-glutamine stretch, with a low length threshold for association even at the lowest volume fractions we considered. Moreover, this self-association occurs irrespective of whether the glutamine stretch is in random coil or hairpin configuration, leading to spherical or cylindrical assemblies, respectively. We discuss the implications of these results for reinterpretation of existing research within this context, including that the routes towards aggregation of exon1 may be distinct to those of the widely studied homopolymeric poly-glutamine peptides

    Mini-Collagens in Hydra Nematocytes

    Get PDF
    We have isolated and characterized four collagen-related c-DNA clones (N-COL 1, N-COL 2, N-COL 3, N-COL 4) that are highly expressed in developing nematocytes in hydra. All four c-DNAs as well as their corresponding transcripts are small in size (600-1,000 bp). The deduced amino acid sequences show that they contain a central region consisting of 14 to 16 Gly-X-Y triplets. This region is flanked amino-terminal by a stretch of 14-23 proline residues and carboxy-terminal by a stretch of 6-9 prolines. At the NH2- and COOH-termini are repeated patterns of cysteine residues that are highly conserved between the molecules. A model is proposed which consists of a central stable collagen triple helix of 12-14 nm length from which three 9-22 nm long polyproline II type helices emerge at both ends. Disulfide linkage between cysteine- rich segments in these helices could lead to the formation of oligomeric network structures. Electrophoretic characterization of nematocyst extracts allows resolution of small proline-rich polypeptides that correspond in size to the cloned sequences
    corecore