1,216 research outputs found

    Review: optical fiber sensors for civil engineering applications

    Get PDF
    Optical fiber sensor (OFS) technologies have developed rapidly over the last few decades, and various types of OFS have found practical applications in the field of civil engineering. In this paper, which is resulting from the work of the RILEM technical committee “Optical fiber sensors for civil engineering applications”, different kinds of sensing techniques, including change of light intensity, interferometry, fiber Bragg grating, adsorption measurement and distributed sensing, are briefly reviewed to introduce the basic sensing principles. Then, the applications of OFS in highway structures, building structures, geotechnical structures, pipelines as well as cables monitoring are described, with focus on sensor design, installation technique and sensor performance. It is believed that the State-of-the-Art review is helpful to engineers considering the use of OFS in their projects, and can facilitate the wider application of OFS technologies in construction industry

    Study of the photo-thermo-mechanical behaviour of PMMA-core POFs

    Get PDF
    The proceeding at: 22nd International Conference on Plastic Optical Fibers (POF 2013), took place in 2013 September,11-13, in Armação dos Buzios, Rio de Janeiro, (Brasil). The event Web site at: http://www.pof2013.org.br/ .In this work, we report the results obtained during the photo-thermo-mechanical characterization of a PMMA-core plastic optical fiber (POF) through tensile tests. Simultaneous measurements of the received optical power and temperature variation during the deformation process are also reported, analyzing its viability as an intensity-based sensing system.This work has been sponsored by the Spanish Ministries of Economy and Education (grants nº TEC2012-37983-C03-02 and Ref. PRX12/00007).Publicad

    3D Micromachining of Optical Devices on Transparent Material by Ultrafast Laser

    Get PDF
    Ultrafast lasers, also referred to as ultrashort pulse lasers, have played an important role in the development of next generation manufacturing technologies in recent years. Their broad range of applications has been investigated in the field of microstructure processing for the biomedical, optical, and many other laboratory and industrial fields. Ultrafast laser machining has numerous unique advantages, including high precision, a small heat affected area, high peak intensity, 3D direct-writing, and other flexible capabilities When integrated with optical delivery, motion devices and control systems, one-step fabrication of assemble-free micro-devices can be realized. In particular, ultrafast lasers enable the creation of various three-dimensional, laser-induced modifications using an extremely high peak intensity over a short time frame, producing precise ablation of material and a small heat affected area in transparent materials. In contrast, lasers with longer pulse durations are based on a thermal effect, which results in significant melting in the heat affected area. In general, ultrafast laser micromachining can be used either to subtract material from or to change the material properties of both absorptive and transparent substances. Recently, integrated micro-devices including optical fiber sensors, microfluidic devices, and lab-on-chips (LOC) have gained worldwide recognition because of their unique characteristics. These micro-devices have been widely used for a broad range of applications, from fundamental research to industry. The development of integrated glass micro-devices introduced new possibilities for biomedical, environmental, civil and other industries and research areas. Of these devices, optical fiber sensors are recognized for their small size, accuracy, resistance to corrosion, fast response and high integration. They have demonstrated their excellent performance in sensing temperature, strain, refractive index and many other physical quantities. In addition to the all-in-fiber device, the LOC is another attractive candidate for use in micro-electro-mechanical systems (MEMS) because it includes several laboratory functions on a single integrated circuit. LOCs provide such advantages as low fluid volume consumption, improved analysis and response times due to short diffusion distances, and better process control, all of which are specific to their application. Combining ultrafast laser micromachining techniques with integrated micro-devices has resulted in research on a variety of fabrication methods targeted for particular purposes. In this dissertation, the direct creation of three-dimensional (3D) structures using an ultra-fast laser was investigated for use in optical devices. This research was motivated by the desire to understand more fully the relationship among laser parameters, material properties and 3D optical structures. Various all-in-fiber sensors in conjunction with femtosecond laser ablation and irradiation were investigated based on magnetic field, temperature and strain application. An incoherent optical carrier based microwave interferometry technique was used for in-situ weak reflector fabrication and a picosecond laser micromachining technique was introduced for developing LOCs with unlimited utilization potential

    POF 2016: 25th International Conference on Plastic Optical Fibres - proceedings

    Get PDF

    Experimental Study and Analysis of a Polymer Fiber Bragg Grating Embedded in a Composite Material

    Get PDF
    The characteristics of polymer fiber Bragg gratings (FBGs) embedded in composite materials are studied in this paper and are compared with characteristics of their silica counterparts. A polymer FBG of 10 mm length which exhibits a peak reflected wavelength circa 1530 nm is fabricated and characterized for this purpose. A silica FBG with a peak reflected wavelength circa 1553 nm is also embedded in the composite material for a comparison study. The fabricated composite material sample with embedded sensors is subjected to temperature and strain changes and the corresponding effects on the embedded polymer and silica FBGs are studied. The measured temperature sensitivity of the embedded polymer FBG was close to that of the same polymer FBG in free space, while the silica FBG shows elevated temperature sensitivity after embedding.With an increase in temperature, spectral broadening was observed for the embedded polymer FBG due to the stress induced by the thermal expansion of the composite material. From the observed wavelength shift and spectral bandwidth change of the polymer FBG, temperature and thermal expansion effects in the composite material can be measured simultaneously

    Innovative Plastic Optical Fiber Sensors

    Get PDF
    This thesis describes the development of new types of fiber optic sensors for the measurement of mechanical quantities such as displacement, vibration and acceleration. Also, it describes the realization of specific acquisition systems designed to interrogate the developed sensors. Since optical fibers have been historically associated with high speed telecommunication links because of their very large bandwidth and low attenuation, there is a great interest for their employment in sensor applications. Fiber sensors represent a promising solution in many fields since fibers can be used for the measurement of several quantities, not only mechanical as those investigated in this work, but also chemical with the possibility to detect specific chemical or bio-chemical molecules. Among the physical quantities to be detected, the displacement measurement is required in some applications, especially in structural civil and mechanical fields, where it is possible to evaluate the cracks evolution, providing information about the safety of the structure under monitoring in order to detect eventually risky situations. All the developed sensors are able to measure the displacement along one or two axis, that can be employed also during vibration tests especially at high frequencies, and also acceleration sensors to monitor acceleration at low frequencies. The developed sensors are based on plastic optical fibers instead of the traditional glass fibers, which are traditionally employed in optical communications. This change is related to the aim of realizing sensors maintaining the excellent typical characteristics of the fibers, such as electromagnetic immunity, intrinsically fire safety and flexibility of applications, but with costs comparable to those of commercial electromechanical sensors. Indeed, nowadays, the commercial fiber optic sensors are based on glass fibers because they have very good performance. However, they find limited applications due to the high costs of their complex interrogation systems and also for the procedure required to splice the fibers. On the other hand, plastic optical fibers represent a promising alternative because of their geometrical and optical properties that allow employing low-cost non coherent sources such as LED and also simplifying the procedure for the sensor connection and installation. Therefore, the design of the proposed plastic optical fiber displacement sensors is described with the sensor practical arrangement and the realized prototypes. An acquisition system has been designed and realized to characterize the sensors and the characterization results are also provided. Moreover, the development and the characterization of a plastic optical fiber sensor able to measure the displacement in two directions have been described. The main drawback of the developed sensors are stability issues and for this reason laboratory and in situ-tests have been carried out in order to verify the sensor performance over the time. I The results obtained with the stability tests have highlighted the necessity to develop displacement sensors with increased stability. To this aim, a compensation technique based on two different wavelengths has been developed. The same working principle of the developed displacement sensor has been exploited to realize a fiber vibrometer to be employed during the vibration monitoring for measuring without contact the vibrations of the device under test. The sensor development, a suitable calibration procedure developed to overcome the problem of real targets with a non uniform reflectivity, and the experimental tests have been described. Furthermore, the preliminary results concerning the feasibility study of a plastic optical fiber accelerometer are reporte

    Optical Sensors

    Get PDF
    This book is a compilation of works presenting recent developments and practical applications in optical sensor technology. It contains 10 chapters that encompass contributions from various individuals and research groups working in the area of optical sensing. It provides the reader with a broad overview and sampling of the innovative research on optical sensors in the world

    Optical Fiber Sensors for Aircraft Structural Health Monitoring

    Get PDF
    Aircraft structures require periodic and scheduled inspection and maintenance operations due to their special operating conditions and the principles of design employed to develop them. Therefore, structural health monitoring has a great potential to reduce the costs related to these operations. Optical fiber sensors applied to the monitoring of aircraft structures provide some advantages over traditional sensors. Several practical applications for structures and engines we have been working on are reported in this article. Fiber Bragg gratings have been analyzed in detail, because they have proved to constitute the most promising technology in this field, and two different alternatives for strain measurements are also described. With regard to engine condition evaluation, we present some results obtained with a reflected intensity-modulated optical fiber sensor for tip clearance and tip timing measurements in a turbine assembled in a wind tunnelThe authors would like to thank Professor A. Guemes for the permission to use the FBG responses shown in Figure 2. This work has been sponsored by the Ministerio de Economia y Competitividad (Spain) and FEDER funds under project TEC2012-37983-C03-01, the Gobierno Vasco/Eusko Jaurlaritza under projects IT664-13, ETORTEK14/13 and by the University of the Basque Country (UPV/EHU) through programs UFI11/16, US13/09 and EUSKAMPUS

    Effects in ultrafast laser micromachining PMMA-based optical fibre grating

    Get PDF
    Ultrafast laser owns extreme small beam size and high pulse intensity which enable spatial localised modification either on the surface or in the bulk of materials. Therefore, ultrafast laser has been widely used to micromachine optical fibres to alter optical structures. In order to do the precise control of the micromachining process to achieve the desired structure and modification, investigations on laser parameters control should be carried out to make better understanding of the effects in the laser micromachining process. These responses are important to laser machining, most of which are usually unknown during the process. In this work, we report the real time monitored results of the reflection of PMMA based optical fibre Bragg gratings (POFBGs) during excimer ultraviolet laser micromachining process. Photochemical and thermal effects have been observed during the process. The UV radiation was absorbed by the PMMA material, which consequently induced the modifications in both spatial structure and material properties of the POFBG. The POFBG showed a significant wavelength blue shift during laser micromachining. Part of it attributed to UV absorption converted thermal energy whilst the other did not disappear after POFBG cooling off, which attributed to UV induced photodegradation in POF
    corecore