423 research outputs found

    Sum-of-Squares approach to feedback control of laminar wake flows

    Get PDF
    A novel nonlinear feedback control design methodology for incompressible fluid flows aiming at the optimisation of long-time averages of flow quantities is presented. It applies to reduced-order finite-dimensional models of fluid flows, expressed as a set of first-order nonlinear ordinary differential equations with the right-hand side being a polynomial function in the state variables and in the controls. The key idea, first discussed in Chernyshenko et al. 2014, Philos. T. Roy. Soc. 372(2020), is that the difficulties of treating and optimising long-time averages of a cost are relaxed by using the upper/lower bounds of such averages as the objective function. In this setting, control design reduces to finding a feedback controller that optimises the bound, subject to a polynomial inequality constraint involving the cost function, the nonlinear system, the controller itself and a tunable polynomial function. A numerically tractable approach to the solution of such optimisation problems, based on Sum-of-Squares techniques and semidefinite programming, is proposed. To showcase the methodology, the mitigation of the fluctuation kinetic energy in the unsteady wake behind a circular cylinder in the laminar regime at Re=100, via controlled angular motions of the surface, is numerically investigated. A compact reduced-order model that resolves the long-term behaviour of the fluid flow and the effects of actuation, is derived using Proper Orthogonal Decomposition and Galerkin projection. In a full-information setting, feedback controllers are then designed to reduce the long-time average of the kinetic energy associated with the limit cycle. These controllers are then implemented in direct numerical simulations of the actuated flow. Control performance, energy efficiency, and physical control mechanisms identified are analysed. Key elements, implications and future work are discussed

    Feedback control of unstable steady states of flow past a flat plate using reduced-order estimators

    Full text link
    We present an estimator-based control design procedure for flow control, using reduced-order models of the governing equations, linearized about a possibly unstable steady state. The reduced models are obtained using an approximate balanced truncation method that retains the most controllable and observable modes of the system. The original method is valid only for stable linear systems, and we present an extension to unstable linear systems. The dynamics on the unstable subspace are represented by projecting the original equations onto the global unstable eigenmodes, assumed to be small in number. A snapshot-based algorithm is developed, using approximate balanced truncation, for obtaining a reduced-order model of the dynamics on the stable subspace. The proposed algorithm is used to study feedback control of 2-D flow over a flat plate at a low Reynolds number and at large angles of attack, where the natural flow is vortex shedding, though there also exists an unstable steady state. For control design, we derive reduced-order models valid in the neighborhood of this unstable steady state. The actuation is modeled as a localized body force near the leading edge of the flat plate, and the sensors are two velocity measurements in the near-wake of the plate. A reduced-order Kalman filter is developed based on these models and is shown to accurately reconstruct the flow field from the sensor measurements, and the resulting estimator-based control is shown to stabilize the unstable steady state. For small perturbations of the steady state, the model accurately predicts the response of the full simulation. Furthermore, the resulting controller is even able to suppress the stable periodic vortex shedding, where the nonlinear effects are strong, thus implying a large domain of attraction of the stabilized steady state.Comment: 36 pages, 17 figure

    The LifeV library: engineering mathematics beyond the proof of concept

    Get PDF
    LifeV is a library for the finite element (FE) solution of partial differential equations in one, two, and three dimensions. It is written in C++ and designed to run on diverse parallel architectures, including cloud and high performance computing facilities. In spite of its academic research nature, meaning a library for the development and testing of new methods, one distinguishing feature of LifeV is its use on real world problems and it is intended to provide a tool for many engineering applications. It has been actually used in computational hemodynamics, including cardiac mechanics and fluid-structure interaction problems, in porous media, ice sheets dynamics for both forward and inverse problems. In this paper we give a short overview of the features of LifeV and its coding paradigms on simple problems. The main focus is on the parallel environment which is mainly driven by domain decomposition methods and based on external libraries such as MPI, the Trilinos project, HDF5 and ParMetis. Dedicated to the memory of Fausto Saleri.Comment: Review of the LifeV Finite Element librar

    Construction of Reduced Order Models for Fluid Flows Using Deep Feedforward Neural Networks

    Full text link
    We present a numerical methodology for construction of reduced order models, ROMs, of fluid flows through the combination of flow modal decomposition and regression analysis. Spectral proper orthogonal decomposition, SPOD, is applied to reduce the dimensionality of the model and, at the same time, filter the POD temporal modes. The regression step is performed by a deep feedforward neural network, DNN, and the current framework is implemented in a context similar to the sparse identification of non-linear dynamics algorithm, SINDy. A discussion on the optimization of the DNN hyperparameters is provided for obtaining the best ROMs and an assessment of these models is presented for a canonical nonlinear oscillator and the compressible flow past a cylinder. Then, the method is tested on the reconstruction of a turbulent flow computed by a large eddy simulation of a plunging airfoil under dynamic stall. The reduced order model is able to capture the dynamics of the leading edge stall vortex and the subsequent trailing edge vortex. For the cases analyzed, the numerical framework allows the prediction of the flowfield beyond the training window using larger time increments than those employed by the full order model. We also demonstrate the robustness of the current ROMs constructed via deep feedforward neural networks through a comparison with sparse regression. The DNN approach is able to learn transient features of the flow and presents more accurate and stable long-term predictions compared to sparse regression
    • …
    corecore