504 research outputs found

    Model Reduction for Multiscale Lithium-Ion Battery Simulation

    Full text link
    In this contribution we are concerned with efficient model reduction for multiscale problems arising in lithium-ion battery modeling with spatially resolved porous electrodes. We present new results on the application of the reduced basis method to the resulting instationary 3D battery model that involves strong non-linearities due to Buttler-Volmer kinetics. Empirical operator interpolation is used to efficiently deal with this issue. Furthermore, we present the localized reduced basis multiscale method for parabolic problems applied to a thermal model of batteries with resolved porous electrodes. Numerical experiments are given that demonstrate the reduction capabilities of the presented approaches for these real world applications

    Mini-Workshop: Adaptive Methods for Control Problems Constrained by Time-Dependent PDEs

    Get PDF
    Optimization problems constrained by time-dependent PDEs (Partial Differential Equations) are challenging from a computational point of view: even in the simplest case, one needs to solve a system of PDEs coupled globally in time and space for the unknown solutions (the state, the costate and the control of the system). Typical and practically relevant examples are the control of nonlinear heat equations as they appear in laser hardening or the thermic control of flow problems (Boussinesq equations). Specifically for PDEs with a long time horizon, conventional time-stepping methods require an enormous storage of the respective other variables. In contrast, adaptive methods aim at distributing the available degrees of freedom in an a-posteriori-fashion to capture singularities and are, therefore, most promising

    Comparison of POD reduced order strategies for the nonlinear 2D Shallow Water Equations

    Full text link
    This paper introduces tensorial calculus techniques in the framework of Proper Orthogonal Decomposition (POD) to reduce the computational complexity of the reduced nonlinear terms. The resulting method, named tensorial POD, can be applied to polynomial nonlinearities of any degree pp. Such nonlinear terms have an on-line complexity of O(kp+1)\mathcal{O}(k^{p+1}), where kk is the dimension of POD basis, and therefore is independent of full space dimension. However it is efficient only for quadratic nonlinear terms since for higher nonlinearities standard POD proves to be less time consuming once the POD basis dimension kk is increased. Numerical experiments are carried out with a two dimensional shallow water equation (SWE) test problem to compare the performance of tensorial POD, standard POD, and POD/Discrete Empirical Interpolation Method (DEIM). Numerical results show that tensorial POD decreases by 76×76\times times the computational cost of the on-line stage of standard POD for configurations using more than 300,000300,000 model variables. The tensorial POD SWE model was only 28×2-8\times slower than the POD/DEIM SWE model but the implementation effort is considerably increased. Tensorial calculus was again employed to construct a new algorithm allowing POD/DEIM shallow water equation model to compute its off-line stage faster than the standard and tensorial POD approaches.Comment: 23 pages, 8 figures, 5 table

    Structure preserving reduced order modeling for gradient systems

    Full text link
    Minimization of energy in gradient systems leads to formation of oscillatory and Turing patterns in reaction-diffusion systems. These patterns should be accurately computed using fine space and time meshes over long time horizons to reach the spatially inhomogeneous steady state. In this paper, a reduced order model (ROM) is developed which preserves the gradient dissipative structure. The coupled system of reaction-diffusion equations are discretized in space by the symmetric interior penalty discontinuous Galerkin (SIPG) method. The resulting system of ordinary differential equations (ODEs) are integrated in time by the average vector field (AVF) method, which preserves the energy dissipation of the gradient systems. The ROMs are constructed by the proper orthogonal decomposition (POD) with Galerkin projection. The nonlinear reaction terms are computed efficiently by discrete empirical interpolation method (DEIM). Preservation of the discrete energy of the FOMs and ROMs with POD-DEIM ensures the long term stability of the steady state solutions. Numerical simulations are performed for the gradient dissipative systems with two specific equations; real Ginzburg-Landau equation and Swift-Hohenberg equation. Numerical results demonstrate that the POD-DEIM reduced order solutions preserve well the energy dissipation over time and at the steady state

    Energy preserving model order reduction of the nonlinear Schr\"odinger equation

    Get PDF
    An energy preserving reduced order model is developed for two dimensional nonlinear Schr\"odinger equation (NLSE) with plane wave solutions and with an external potential. The NLSE is discretized in space by the symmetric interior penalty discontinuous Galerkin (SIPG) method. The resulting system of Hamiltonian ordinary differential equations are integrated in time by the energy preserving average vector field (AVF) method. The mass and energy preserving reduced order model (ROM) is constructed by proper orthogonal decomposition (POD) Galerkin projection. The nonlinearities are computed for the ROM efficiently by discrete empirical interpolation method (DEIM) and dynamic mode decomposition (DMD). Preservation of the semi-discrete energy and mass are shown for the full order model (FOM) and for the ROM which ensures the long term stability of the solutions. Numerical simulations illustrate the preservation of the energy and mass in the reduced order model for the two dimensional NLSE with and without the external potential. The POD-DMD makes a remarkable improvement in computational speed-up over the POD-DEIM. Both methods approximate accurately the FOM, whereas POD-DEIM is more accurate than the POD-DMD
    corecore