123 research outputs found

    Simultaneous multi-access in heterogeneous mobile networks

    Get PDF
    The exponential growth of the number of multihomed mobile devices is changing the way how we connect to the Internet. Unfortunately, it is not yet easily possible to a multihomed device to be simultaneously connected to the network through multiple links. This work enhances the network access of multihomed devices. This enhancement is achieved by using simultaneously all of the mobile devices interfaces, and by individually routing each data flow through the most adequate technology. The proposed solution is only deployed at the network core and it does not depend on the mobile devices, i.e., it’s transparent to the mobile devices. This work gives the necessary tools to reuse the already deployed technologies like WiFi or 3G/LTE. Moreover, it is also possible to extend the network by using femtocells which support multi access technologies. This work is also integrated with IEEE 802.21 standard to improve the handover mechanisms in the network. Additionally, we also propose an integration with a broker that can manage all the data flows individually. The proposed solution improves the quality of service of the users while not overloading the operator infrastructure. Evaluation results, obtained from the developed prototype, evidence that the overhead for using the proposed solution is very small when compared to the advantages.O crescimento exponencial do número de equipamentos móveis com múltiplas tecnologias de acesso à rede está a mudar a maneira como nos ligamos à Internet. Infelizmente, ainda não é possível usar simultaneamente todas as interfaces de rede de um equipamento móvel. Este trabalho melhora o acesso à rede a partir de dispositivos móveis com múltiplas interfaces de rede. Para alcançar esta melhoria todas as interfaces de rede dos dispositivos móveis podem ser usadas simultaneamente, e os fluxos de tráfego são encaminhados individualmente através da tecnologia mais conveniente. A solução proposta apenas é instalada na rede core, ou seja, é transparente para os equipamentos móveis. Este trabalho desenvolveu as ferramentas necessárias para reutilizar as tecnologias existentes que já estão disponíveis em larga escala, como o WiFi ou o 3G/LTE. É também possível usar femto-­células com suporte a múltiplas tecnologias de acesso para expandir mais rapidamente a rede. Este trabalho criou também uma integração com a norma IEEE 802.21 para melhorar os processos de handover. Adicionalmente propomos a integração com um broker externo para uma melhor gestão dos fluxos de tráfego. A solução proposta melhora a qualidade de serviço dos utilizadores sem sobrecarregar a infra-­estrutura do operador. Os resultados obtidos a partir dos testes realizados ao protótipo desenvolvido mostram que o impacto na performance ao usar esta solução é extremamente reduzido quando comparado com as suas vantagens

    IP Flow Mobility support for Proxy Mobile IPv6 based networks

    Get PDF
    The ability of offloading selected IP data traffic from 3G to WLAN access networks is considered a key feature in the upcoming 3GPP specifications, being the main goal to alleviate data congestion in celular networks while delivering a positive user experience. Lately, the 3GPP has adopted solutions that enable mobility of IP-based wireless devices relocating mobility functions from the terminal to the network. To this end, the IETF has standardized Proxy Mobile IPv6 (PMIPv6), a protocol capable to hide often complex mobility procedures from the mobile devices. This thesis, in line with the mentioned offload requirement, further extends Proxy Mobile IPv6 to support dynamic IP flow mobility management across access wireless networks according to operator policies. In this work, we assess the feasibility of the proposed solution and provide an experimental analysis based on a prototype network setup, implementing the PMIPv6 protocol and the related enhancements for flow mobility support. *** La capacità di spostare flussi IP da una rete di accesso 3G ad una di tipo WLAN è considerata una caratteristica chiave nelle specifiche future di 3GPP, essendo il principale metodo per alleviare la congestione nelle reti cellulari mantenendo al contempo una ragionevole qualità percepita dall'utente. Recentemente, 3GPP ha adottato soluzioni di mobilità per dispositivi con accesso radio basato su IP, traslando le funzioni di supporto dal terminale alla rete, e, a questo scopo, IETF ha standardizzato Proxy Mobile IPv6 (PMIPv6), un protocollo studiato per nascondere le procedure di mobilità ai sistemi mobili. Questa tesi, in linea con la citata esigenza di spostare flussi IP, estende ulteriormente PMIPv6 per consentire il supporto alla mobilità di flussi tra diverse reti di accesso wireless, assecondando le regole e/o politiche definite da un operatore. In questo lavoro, ci proponiamo di asserire la fattibilità della soluzione proposta, fornendo un'analisi sperimentale di essa sulla base di un prototipo di rete che implementa il protocollo PMIPv6 e le relative migliorie per il supporto alla mobilità di flussiope

    HDMM: deploying client and network-based distributed mobility management

    Get PDF
    Mobile operators are now facing the challenges posed by a huge data demand from users, mainly due to the introduction of modern portable devices and the success of mobile applications. Moreover, users are now capable to connect from different access networks and establish several active sessions simultaneously, while being mobile. This triggered the introduction of a new paradigm: the distributed mobility management (DMM) which aims at flattening the network and distributing the entities in charge of managing users' mobility. In this article, we review existing DMM proposals and describe a hybrid solution which benefits from combining a network-based and a client-based approach. We analyze the signaling cost and the handover latency of our proposal, comparing them with their centralized alternatives. We also include validation and performance results from experiments conducted with a Linux-based prototype, which show that achievable enhancements depend on the underlying network topology. We argue that the proposed hybrid DMM solution provides additional flexibility to the mobile network operators, which can decide when and how to combine these two approaches.The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7-ICT-2009-5) under Grant agreement n. 258053 (MEDIEVAL project) and from the Spanish Government, MICINN, under research grant TIN2010-20136-C0

    Distributed IP mobility management for hosts and networks

    Get PDF
    Includes bibliographical references.The Internet was originally designed for stationary nodes. With the advancement of mobile nodes (such as smartphones and tablets) that have wireless Internet access capability, the original design of the Internet is no longer sufficient. These mobile nodes are capable of communicating while moving and changing their point of attachment in the Internet. To maintain communication session(s) continuity for these mobile nodes, the Internet needs mobility management mechanisms. The main mobility management protocols standardised by the Internet Engineering Task Force (IETF) are mobile IP (MIPv6 and MIPv4) and their numerous extensions and variants, including proxy MIP (PMIPv6 and PMIPv4). The architectural structures of these protocols employ a centralized mobility anchor to manage the mobility of the mobile nodes in the control and data planes. The mobility anchor manages the mobility binding information and the forwarding of data packets for all mobile nodes registered in the network. However, in the context of the rapid growth in the number of mobile users and the data traffic volume, as well as the trend towards a flat architecture in mobile networks, the centralized mobility management approach provides insufficient mobility support to the mobile nodes. For example, to manage the demand for increased mobile users, a huge amount of data traffic will be pushed to the centralized mobility anchor. Yet, routing huge volumes of traffic via the centralized mobility anchor can be non-optimal in terms of routing efficiency. Thus, the centralised mobility anchor can be a potential bottleneck, and a single point of failure. Consequently, failure of the mobility anchor may lead to a service outage for a large number of mobile nodes. Ultimately, the centralized mobility management approach does not scale well with the increase in number of mobile users and the data traffic volume. These problems are also costly to resolve within the centralized mobility management approach and its related centralized network architecture. Distributed mobility management (DMM) is one recent approach that can efficiently address the shortcomings of centralized mobility management. It provides an alternative paradigm for developing IP mobility management – without employing centralized mobility anchors. In this paradigm, either the mobility anchors, or their mobility management functions, are distributed to different networks/elements. The mobility anchors, or the mobility management functions, are brought to the edge of the networks, which is closer to the mobile nodes. Distributed mobility management also offers dynamic mobility features that allow a mobile node to anchor traffic at different mobility anchors. However, to date, mobility management schemes that have been developed based on the DMM approach are still in the preliminary stages, and there is no current standard in place. These developed DMM schemes are still experiencing problems, such as long routing paths, especially for long-lasting data traffic, a lack of route optimization for ongoing communication, and a lack of synchronization of the mobile nodes‟ location in different networks. Moreover, the majority of these proposed schemes still need to be analysed, in order to quantify their feasibility. The thesis proposes three novel network-based distributed mobility management schemes, which are based on the DMM approach. The schemes enhance PMIPv6 to work in a distributed manner, in order to address the problems of centralized mobility management. Furthermore, the schemes address the following issues: (1) the lack of route optimization for ongoing communication; (2) the lack of synchronization of the mobile nodes‟ location in different networks; and (3) the long end-to-end packet delivery delay problems in recently proposed DMM schemes. The first scheme, called the network-based distributed mobility management scheme with routing management function at the gateways (DM-RMG), decomposes the logical mobility management functions of the Local Mobility Anchor (LMA) in PMIPv6 into internetwork location management (LM), routing management (RM), and home network prefix allocation (HNP) functions. After the decomposition, the RM function is collocated at the gateways of different networks. In this way, the data-plane routing function of the respective mobile nodes is served by the corresponding local RM function at the network gateway. The DM-RMG scheme offers distributed mobility management for individual mobile nodes (i.e., mobile hosts) during mobility events. DM-RMG also implements a mechanism to optimize the handover delay. The results obtained from analytical modelling and simulation show that the DM-RMG scheme outperforms the centralized mobility management schemes, as well as currently proposed distributed mobility management schemes in terms of the end-to-end packet delivery delay under different network load conditions. The optimized handover performance of the DM-RMG scheme, investigated under different traffic patterns and mobile node speeds, shows that the scheme also mitigates the internetwork handover delay and packet loss. The second proposed scheme, called network-based distributed mobility management for the network mobility (NDM-RMG), uses a similar approach to DM-RMG. However, it proposes a network-based DMM scheme for Network Mobility (NEMO). The main goal of the NDMRMG scheme is to address the problems of centralized mobility management protocols for NEMO, including the pinball routing problem in nested NEMO. NDM-RMG is compared with centralized mobility management schemes for NEMO, and recently proposed distributed IP mobility management schemes for NEMO by means of analytical modelling and simulation evaluations. NDM-RMG shows better performance in terms of reducing the packet delivery latency, the size of the packet header, and the packet overhead experienced over the wireless link. The third proposed scheme, called network-based distributed mobility management scheme with RM and HNP allocation functions distributed to the access routers (DM-RMA), distributes the RM and the HNP allocation functions at the access routers with the mobility client function. This brings the mobility-related functions closer to the mobile nodes, that is, to the edge of the network. An analytical model is developed to investigate the mobility cost performance of the scheme, due to signalling, packet delivery, and tunnelling. The analytical results indicate that DM-RMA performs better than the previous DMM schemes in terms of packet delivery, tunnelling and total costs. Network simulator-2 (ns-2) is used to model the DM-RMA scheme. The simulated scenarios confirm that DM-RMA performs better than other proposed DMM schemes in terms of reducing the location update latency at the location managers, end-to-end packet delivery delay, handover delay, and packet loss. In addition to the three proposed DMM schemes, this thesis proposes a routing optimization scheme for PMIPv6. The main goal of this scheme is to enable PMIPv6 to offer route optimization to mobile nodes in a PMIPv6 domain. The scheme reduces the route optimization-establishment latency, the packet delivery latency, and the packet loss. Using ns-2 simulations and considering different simulated scenarios, the results show that the scheme reduces route optimization-establishment latency and delayed packets during the route optimization operation, as compared to previously proposed PMIPv6 route optimization schemes. The results also show that the scheme reduces packet loss when a mobile node undergoes handover in the PMIPv6 domain

    Virtual Mobility Domains - A Mobility Architecture for the Future Internet

    Get PDF
    The advances in hardware and wireless technologies have made mobile communication devices affordable by a vast user community. With the advent of rich multimedia and social networking content, an influx of myriads of applications, and Internet supported services, there is an increasing user demand for the Internet connectivity anywhere and anytime. Mobility management is thus a crucial requirement for the Internet today. This work targets novel mobility management techniques, designed to work with the Floating Cloud Tiered (FCT) internetworking model, proposed for a future Internet. We derive the FCT internetworking model from the tiered structure existing among Internet Service Provider (ISP) networks, to define their business and peering relationships. In our novel mobility management scheme, we define Virtual Mobility Domains (VMDs) of various scopes, that can support both intra and inter-domain roaming using a single address for a mobile node. The scheme is network based and hence imposes no operational load on the mobile node. This scheme is the first of its kind, by leveraging the tiered structure and its hierarchical properties, the collaborative network-based mobility management mechanism, and the inheritance information in the tiered addresses to route packets. The contributions of this PhD thesis can be summarized as follows: · We contribute to the literature with a comprehensive analysis of the future Internet architectures and mobility protocols over the period of 2002-2012, in light of their identity and handoff management schemes. We present a qualitative evaluation of current and future schemes on a unified platform. · We design and implement a novel user-centric future Internet mobility architecture called Virtual Mobility Domain. VMD proposes a seamless, network-based, unique collaborative mobility management within/across ASes and ISPs in the FCT Internetworking model. The analytical and simulation-based handoff performance analysis of the VMD architecture in comparison with the IPv6-based mobility protocols presents the considerable performance improvements achieved by the VMD architecture. · We present a novel and user-centric handoff cost framework to analyze handoff performance of different mobility schemes. The framework helps to examine the impacts of registration costs, signaling overhead, and data loss for Internet connected mobile users employing a unified cost metric. We analyze the effect of each parameter in the handoff cost framework on the handoff cost components. We also compare the handoff performance of IPv6-based mobility protocols to the VMD. · We present a handoff cost optimization problem and analysis of its characteristics. We consider a mobility user as the primary focus of our study. We then identify the suitable mathematical methods that can be leveraged to solve the problem. We model the handoff cost problem in an optimization tool. We also conduct a mobility study - best of our knowledge, first of its kind - on providing a guide for finding the number of handoffs in a typical VMD for any given user\u27s mobility model. Plugging the output of mobility study, we then conduct a numerical analysis to find out optimum VMD for a given user mobility model and check if the theoretical inferences are in agreement with the output of the optimization tool

    An overview of internet engineering task force mobility management protocols: approaches and its challenges

    Get PDF
    In recent years, internet protocol mobility management has become one of the most popular research areas in networking. Mobility management protocols are in charge of preserving continuing communications as a user roam between different networks. All existing internet protocols (IP), like MIPv6, and PMIPv6, rely on a centralized mobility anchor to control mobile node traffic and signaling. The disadvantages of centralized mobility management (CMM) include ineffectiveness in handling massive volumes of traffic, poor scalability, wasteful use of network resources, and packet delay. When CMM is required to handle mobile media, which demands a huge amount of information and frequently needs quality of services (QoS) such as session continuance and reduced latency, these difficulties become apparent. It drives the need for distributed mobility management protocol (DMM) systems to manage the growing amount of mobile data, the overwhelming of this is video communication. DMM approaches could be regarded as an innovative and effective method to deal with mobility. An overview of the CMM protocol and its drawbacks are analyzed. This study examines the various DMM protocol techniques and their performance metrics are compared to highlight similarities and differences. The study reveals the network-based DMM protocol improves overall handoff time and packet loss

    SDN-DMM for intelligent mobility management in heterogeneous mobile IP networks

    Full text link
    [EN] Mobility management applied to the traditional architecture of the Internet has become a great challenge because of the exponential growth in the number of devices that can connect to the network. This article proposes a Software-Defined Networking (SDN)-based architecture, called SDN-DMM (SDN-Distributed Mobility Management), that deals with the distributed mode of mobility management in heterogeneous access networks in a simplified and efficient way, ensuring mainly the continuity of IP sessions. Intent-based mobility management with an IP mapping schema for mobile node identification offers optimized routing without tunneling techniques, hence, an efficient use of the network infrastructure. The simplified mobility control API reduces both signaling and handover latency costs and provides a better scalability and performance in comparison with traditional and SDN-based DMM approaches. An analytical evaluation of such costs demonstrated the better performance of SDN-DMM, and a proof of concept of the proposal was implemented in a real environment.CAPES (Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior) - Brasil; Secretaria de Estado de Investigacion, Desarrollo e Innovacion, Grant/Award Number: TIN2017-84802-C2-1-P; "Convocatoria 2017 - Proyectos I+D+I Programa Estatal de Investigacion, Desarrollo e Innovacion, convocatoria excelencia", Grant/Award Number: TIN2017-84802-C2-1-P; FAP-DF ("Fundacao de Apoio a Pesquisa do Distrito Federal")-BrazilTorres Cordova, R.; Gondim, PRL.; Llerena, YP.; Lloret, J. (2019). SDN-DMM for intelligent mobility management in heterogeneous mobile IP networks. International Journal of Communication Systems. 32(17):1-31. https://doi.org/10.1002/dac.4140131321

    LoWMob: Intra-PAN Mobility Support Schemes for 6LoWPAN

    Get PDF
    Mobility in 6LoWPAN (IPv6 over Low Power Personal Area Networks) is being utilized in realizing many applications where sensor nodes, while moving, sense and transmit the gathered data to a monitoring server. By employing IEEE802.15.4 as a baseline for the link layer technology, 6LoWPAN implies low data rate and low power consumption with periodic sleep and wakeups for sensor nodes, without requiring them to incorporate complex hardware. Also enabling sensor nodes with IPv6 ensures that the sensor data can be accessed anytime and anywhere from the world. Several existing mobility-related schemes like HMIPv6, MIPv6, HAWAII, and Cellular IP require active participation of mobile nodes in the mobility signaling, thus leading to the mobility-related changes in the protocol stack of mobile nodes. In this paper, we present LoWMob, which is a network-based mobility scheme for mobile 6LoWPAN nodes in which the mobility of 6LoWPAN nodes is handled at the network-side. LoWMob ensures multi-hop communication between gateways and mobile nodes with the help of the static nodes within a 6LoWPAN. In order to reduce the signaling overhead of static nodes for supporting mobile nodes, LoWMob proposes a mobility support packet format at the adaptation layer of 6LoWPAN. Also we present a distributed version of LoWMob, named as DLoWMob (or Distributed LoWMob), which employs Mobility Support Points (MSPs) to distribute the traffic concentration at the gateways and to optimize the multi-hop routing path between source and destination nodes in a 6LoWPAN. Moreover, we have also discussed the security considerations for our proposed mobility schemes. The performance of our proposed schemes is evaluated in terms of mobility signaling costs, end-to-end delay, and packet success ratio
    • …
    corecore