10 research outputs found

    Improving Detection of Dim Targets: Optimization of a Moment-based Detection Algorithm

    Get PDF
    Wide area motion imagery (WAMI) sensor technology is advancing rapidly. Increases in frame rates and detector array sizes have led to a dramatic increase in the volume of data that can be acquired. Without a corresponding increase in analytical manpower, much of these data remain underutilized. This creates a need for fast, automated, and robust methods for detecting dim, moving signals of interest. Current approaches fall into two categories: detect-before-track (DBT) and track-before-detect (TBD) methods. The DBT methods use thresholding to reduce the quantity of data to be processed, making real time implementation practical but at the cost of the ability to detect low signal to noise ratio (SNR) targets without acceptance of a high false alarm rate. TBD methods exploit both the temporal and spatial information simultaneously to make detection of low SNR targets possible, but at the cost of computation time. This research seeks to contribute to the near real time detection of low SNR, unresolved moving targets through an extension of earlier work on higher order moments anomaly detection, a method that exploits both spatial and temporal information but is still computationally efficient and massively parallellizable. The MBD algorithm was found to detect targets comparably with leading TBD methods in 1000th the time

    Multi Sensor Multi Target Perception and Tracking for Informed Decisions in Public Road Scenarios

    Get PDF
    Multi-target tracking in public traffic calls for a tracking system with automated track initiation and termination facilities in a randomly evolving driving environment. Besides, the key problem of data association needs to be handled effectively considering the limitations in the computational resources on-board an autonomous car. The challenge of the tracking problem is further evident in the use of high-resolution automotive sensors which return multiple detections per object. Furthermore, it is customary to use multiple sensors that cover different and/or over-lapping Field of View and fuse sensor detections to provide robust and reliable tracking. As a consequence, in high-resolution multi-sensor settings, the data association uncertainty, and the corresponding tracking complexity increases pointing to a systematic approach to handle and process sensor detections. In this work, we present a multi-target tracking system that addresses target birth/initiation and death/termination processes with automatic track management features. These tracking functionalities can help facilitate perception during common events in public traffic as participants (suddenly) change lanes, navigate intersections, overtake and/or brake in emergencies, etc. Various tracking approaches including the ones based on joint integrated probability data association (JIPDA) filter, Linear Multi-target Integrated Probabilistic Data Association (LMIPDA) Filter, and their multi-detection variants are adapted to specifically include algorithms that handle track initiation and termination, clutter density estimation and track management. The utility of the filtering module is further elaborated by integrating it into a trajectory tracking problem based on model predictive control. To cope with tracking complexity in the case of multiple high-resolution sensors, we propose a hybrid scheme that combines the approaches of data clustering at the local sensor and multiple detections tracking schemes at the fusion layer. We implement a track-to-track fusion scheme that de-correlates local (sensor) tracks to avoid double counting and apply a measurement partitioning scheme to re-purpose the LMIPDA tracking algorithm to multi-detection cases. In addition to the measurement partitioning approach, a joint extent and kinematic state estimation scheme are integrated into the LMIPDA approach to facilitate perception and tracking of an individual as well as group targets as applied to multi-lane public traffic. We formulate the tracking problem as a two hierarchical layer. This arrangement enhances the multi-target tracking performance in situations including but not limited to target initialization(birth process), target occlusion, missed detections, unresolved measurement, target maneuver, etc. Also, target groups expose complex individual target interactions to help in situation assessment which is challenging to capture otherwise. The simulation studies are complemented by experimental studies performed on single and multiple (group) targets. Target detections are collected from a high-resolution radar at a frequency of 20Hz; whereas RTK-GPS data is made available as ground truth for one of the target vehicle\u27s trajectory

    Exploring space situational awareness using neuromorphic event-based cameras

    Get PDF
    The orbits around earth are a limited natural resource and one that hosts a vast range of vital space-based systems that support international systems use by both commercial industries, civil organisations, and national defence. The availability of this space resource is rapidly depleting due to the ever-growing presence of space debris and rampant overcrowding, especially in the limited and highly desirable slots in geosynchronous orbit. The field of Space Situational Awareness encompasses tasks aimed at mitigating these hazards to on-orbit systems through the monitoring of satellite traffic. Essential to this task is the collection of accurate and timely observation data. This thesis explores the use of a novel sensor paradigm to optically collect and process sensor data to enhance and improve space situational awareness tasks. Solving this issue is critical to ensure that we can continue to utilise the space environment in a sustainable way. However, these tasks pose significant engineering challenges that involve the detection and characterisation of faint, highly distant, and high-speed targets. Recent advances in neuromorphic engineering have led to the availability of high-quality neuromorphic event-based cameras that provide a promising alternative to the conventional cameras used in space imaging. These cameras offer the potential to improve the capabilities of existing space tracking systems and have been shown to detect and track satellites or ‘Resident Space Objects’ at low data rates, high temporal resolutions, and in conditions typically unsuitable for conventional optical cameras. This thesis presents a thorough exploration of neuromorphic event-based cameras for space situational awareness tasks and establishes a rigorous foundation for event-based space imaging. The work conducted in this project demonstrates how to enable event-based space imaging systems that serve the goals of space situational awareness by providing accurate and timely information on the space domain. By developing and implementing event-based processing techniques, the asynchronous operation, high temporal resolution, and dynamic range of these novel sensors are leveraged to provide low latency target acquisition and rapid reaction to challenging satellite tracking scenarios. The algorithms and experiments developed in this thesis successfully study the properties and trade-offs of event-based space imaging and provide comparisons with traditional observing methods and conventional frame-based sensors. The outcomes of this thesis demonstrate the viability of event-based cameras for use in tracking and space imaging tasks and therefore contribute to the growing efforts of the international space situational awareness community and the development of the event-based technology in astronomy and space science applications

    Improving the integration of mental health services in primary health care at the macro level

    Get PDF
    Mental disorders are highly prevalent in Australia. The most frequently diagnosed conditions are anxiety, affective and substance use disorders. Comorbidities are common, both in terms of concurrent mental health conditions and concurrent physical and mental health conditions. Many individuals with lived experience of mental illness also face a range of non-medical issues (e.g. housing, employment and education needs). Typically, individuals requiring mental health care for most moderate/mild cases are supported in primary health care (PHC), though specialist care in secondary and tertiary settings is required for more severe conditions. Given the multifaceted nature of mental health conditions, support for individuals experiencing such diagnoses also needs to be multidisciplinary and collaborative. PHC mental health services encompass a range of services, including counselling, pharmacological treatments, referrals and follow-up care, provided by health professionals in PHC settings (e.g. general practice) to treat or prevent mental health problems
    corecore