250 research outputs found

    Characterization and Emulation of Low-Voltage Power Line Channels for Narrowband and Broadband Communication

    Get PDF
    The demand for smart grid and smart home applications has raised the recent interest in power line communication (PLC) technologies, and has driven a broad set of deep surveys in low-voltage (LV) power line channels. This book proposes a set of novel approaches, to characterize and to emulate LV power line channels in the frequency range from0.15to 10 MHz, which closes gaps between the traditional narrowband (up to 500 kHz) and broadband (above1.8 MHz) ranges

    Characterization and Emulation of Low-Voltage Power Line Channels for Narrowband and Broadband Communication

    Get PDF
    The demand for smart grid and smart home applications has raised the recent interest in power line communication (PLC) technologies, and has driven a broad set of deep surveys in low-voltage (LV) power line channels. This book proposes a set of novel approaches, to characterize and to emulate LV power line channels in the frequency range from0.15to 10 MHz, which closes gaps between the traditional narrowband (up to 500 kHz) and broadband (above1.8 MHz) ranges

    Broadband Power Line Communication in Railway Traction Lines: A Survey

    Get PDF
    Power line communication (PLC) is a technology that exploits existing electrical transmission and distribution networks as guiding structures for electromagnetic signal propagation. This facilitates low-rate data transmission for signaling and control operations. As the demand in terms of data rate has greatly increased in the last years, the attention paid to broadband PLC (BPLC) has also greatly increased. This concept also extended to railways as broadband traction power line communication (BTPLC), aiming to offer railway operators an alternative data network in areas where other technologies are lacking. However, BTPLC implementation faces challenges due to varying operating scenarios like urban, rural, and galleries. Hence, ensuring coverage and service continuity demands the suitable characterization of the communication channel. In this regard, the scientific literature, which is an indicator of the body of knowledge related to BTPLC systems, is definitely poor if compared to that addressed to BPLC systems installed on the electrical transmission and distribution network. The relative papers dealing with BTPLC systems and focusing on the characterization of the communication channel show some theoretical approaches and, rarely, measurements guidelines and experimental results. In addition, to the best of the author's knowledge, there are no surveys that comprehensively address these aspects. To compensate for this lack of information, a survey of the state of the art concerning BTPLC systems and the measurement methods that assist their installation, assessment, and maintenance is presented. The primary goal is to provide the interested readers with a thorough understanding of the matter and identify the current research gaps, in order to drive future research towards the most significant issues

    Characterization and Emulation of Low-Voltage Power Line Channels for Narrowband and Broadband Communication

    Get PDF
    This thesis proposes a set of novel approaches to characterize and to emulate LV power line channels in the frequency range from 0.15 to 10MHz, which close gaps between the traditional narrowband (up to 500 kHz) and broadband (above 1.8MHz) ranges

    Electromagnetic compatibility of power line communication systems

    Get PDF
    The power system has been used for communication purposes for many decades, although it was mainly the power utility companies that used low bit rates for control and monitoring purposes. In the last ten years, however, the deregulation of the power and telecommunication markets has spurred the idea of using and commercializing the power networks for a range of new communication applications and services. The idea has been developed and implemented into both, narrowband and broadband systems, which are defined in terms of the operation frequency band. Depending on the frequency band, the systems over powerlines can be: Narrow-band. They use frequencies ranging from 3-148.5 kHz in Europe, with the upper frequency extending up to 500 kHz in the United States and Japan. In Europe, this frequency range is standardized by CENELEC Standard EN 50065. Broadband. The used frequency range is 1-30MHz; 1-15MHz for outdoor systems and 15-30MHz for indoor systems. In this frequency range, the standardization situation is still unclear and there exist no regulations. The developed applications and systems use different parts of the power network: medium voltage (MV) and low voltage (LV) cabling for outdoor applications and building cabling for indoor applications. These cables are designed and optimized for power transmission at frequencies of 50/60Hz and represent a hostile medium for transmissions at higher frequencies. This thesis concentrates on electromagnetic compatibility (EMC) aspects and some optimization issues of the broadband systems, currently known as Powerline Communications (PLC) or Broadband Power Line (BPL). The work presented here was preformed in the framework of the European project OPERA (http://www.ist-opera.org/). A short description of the project is given in Chapter 1. The second chapter presents the basis, introduction, description and state of the art of the topics of interest for this thesis. That chapter is divided into three parts. Each of these parts starts with a short introduction to the topic to be addressed. The introductions are intended for those not familiar with the topic at hand and they can be skipped by those already knowledgeable of it. The first part of Chapter 2 gives an overview and introduction to telecommunication issues relevant to the thesis, as well as the general technical specifications of the OPERA system. The second part deals with the transmission medium which, for the case of PLC, is the power system. The fundamentals and the different components of the PLC system are given there and the state of the art regarding the transmission channel is presented. The third part deals with the EMC and standardization issues related to the technology. The main contributions of the thesis are presented in chapters 3 to 7. The PLC technology distinguishes itself from other technologies in that it uses already existing, ubiquitous wiring, so that no new infrastructure is needed. On the other hand, using a channel designed originally for other purposes means that it is not optimized for the frequencies and applications of interest for broadband transmission. If PLC is to compete with other technologies, these problems have to be well understood and solved, so that the system can be optimized by taking into account the parameters and constrains of the already existing medium. Although the PLC system is being improved continuously, there are still concerns about emissions, immunity and standardization. These issues are important since PLC operates in an environment already populated by other services at the same frequencies, so that fair co-existence is needed. Moreover, the PLC modem has a combined mains and telecom port and, as a consequence, the standards for conducted emissions from those two types of ports are not directly applicable. In addition, the symmetry of the cables used is low and, therefore, emissions are higher than, for example, emissions from twisted pair cables used in xDSL. A good understanding of emissions and immunity in PLC systems is therefore of great importance for the optimization of the system and for EMC standardization to be based on objective technical criteria. Even if the basic phenomena are essentially the same as for any other wire transmission system, the complexity and variability of the topologies of existing structures is so large that simple, straightforward solutions are often not applicable. Emissions from the cabling are primarily due to the common mode signals. Part of the energy in this mode is injected by the imperfectly balanced output stages of the PLC modems themselves. In addition, the common mode appears at punctual imbalanced discontinuities and distributed asymmetry along the PLC signal path in the power cables. Chapter 3 presents the work performed to improve our understanding of the sources of the common-mode current and the parameters that influence its behavior, including related measurements and simulations. For the purpose of this study, a model house was built at the EPFL's test site. Different cablings were used to study the influence of different parameters on the behavior of the common-mode current since it is the main source for both types of emissions, conducted and radiated ones. The influence of different parameters such as the cable terminations, the symmetry of the termination, the height of the conductors above the ground, the presence of power outlets, switches, empty and occupied sockets and the topology, are analyzed. The data are also used to test two methods used to simulate the differential-to-common-mode conversion and the conducted emissions, namely the transmission line model and the full wave approach provided by the Method of Moments through the Numerical Electromagnetic Code (NEC). In Chapter 4, problems related to PLC immunity testing are treated. We show that the conversion of the differential mode to the common mode is coupled with the reverse conversion by reciprocity. Due to the low symmetry of PLC cabling, part of the injected common mode test signal is converted into a differential mode signal that interferes with the wanted signal at the input of the modem being tested. Depending on the actual symmetry of the Coupling-Decoupling Network (CDN), not specified in the standards, the immunity test may yield erroneous results due to the effect of this differential mode component. Working under the assumption that the CDN is built to exhibit a symmetry similar to that of PLC networks as inferred from its longitudinal conversion loss, we estimate the differential mode disturbance level that the modems should withstand from a narrowband interferer. The bit error rate induced by the presence of the disturbing differential mode current from the CDN is also estimated, for a total physical channel transmission rate of 200 Mbps, to be of the order of 1×10-5 to 5×10-5. Since these rates can be handled by error correcting coding and MAC ARQ procedures, it is concluded that the modems are not likely to suffer any severe performance degradation due to immunity testing if the CDN exhibits a symmetry similar to that of PLC networks. Simulating the complete PLC network or any significant part of it using numerical techniques such as the method of moments proves to be of limited practical use due to the fact that PLC networks extend over many wavelengths. The transmission line approximation, on the other hand, although more efficient and sufficiently accurate for differential mode calculations, is not directly applicable to simulate the EMC behavior since it neglects the antenna-mode currents that are significant contributors to the radiated emissions. Chapter 5 presents a novel approach to evaluate the antenna-mode currents using a modified transmission line theory, thus making this numerically efficient technique applicable to the estimation of emissions in PLC. An integral equation describing the antenna-mode currents along a two-wire transmission line is derived. It is further shown that, when the line cross-sectional dimensions are electrically small, the integral equation reduces to a pair of transmission line-like equations with equivalent line parameters (per-unit-length inductance and capacitance). The derived equations make it possible to compute the antenna mode currents using a traditional transmission line code with appropriate parameters. The derived equations are tested versus numerical results obtained using NEC and reasonably good agreement is found. Another important EMC issue related to PLC is the mitigation of emissions. Chapter 6 describes a technique that has been proposed to achieve a reduction of emissions associated with indoor PLC networks through the introduction of a 180° out-of-phase replica of the PLC signal into the unused neutral-ground circuit. A modification to this technique is proposed based on the selection of the appropriate amplitude and phase of the auxiliary signal, allowing a higher degree of field attenuation. A way of implementing this technique is proposed and studied, namely the integration of a required antenna into the PLC modems themselves. The measured fields very close to the modem allow the determination of the magnitude and phase of the compensation voltage. The proposed implementation should be used only to handle customer complaints, when emissions should be lowered at locations where PLC signals might cause unwanted interference or when additional capacity is required and it can be obtained through the gained signal to noise margin. Although, in principle, due to nonalignment of the wanted and the compensation field directions, minimizing one component of the field may result in an increase of the other components, we show that the application of the technique results in an overall average reduction of 10-20 dB of all the field components in the region of interest. In the same Chapter 6, we address the more general issue of the application of mitigation techniques' gained emissions margin to increase the overall throughput of PLC systems. We show that an increase in the signal power (made possible by the inclusion of mitigation techniques) leads to a considerable increase in the PLC channel capacity. Using a number of simplifications, we show that the capacity of the channel can indeed be increased by up to 66 Mbps for mitigation efficiencies of only 10 dB. We also present the results of laboratory measurements aimed at studying, under controlled conditions, different characteristics of notching in OPERA PLC modems, such as total and effective notch width, notch depth, maximum notch depth, etc. These measurements show that it is possible to obtain attenuations of up to about 45 dB for notches in all frequency bands, 10MHz, 20MHz and 30MHz. What differs for these three bands is the minimum number of carriers that need to be notched to obtain that maximum attenuation. This is an important point, since, to implement notches that have the required depth and width, one must know how many subcarriers to suppress and how deep these need to be reduced. High density PLC deployment requires the increase of overall system data rate. To achieve the higher data rates, frequency reuse in these systems is needed. In Chapter 7, we present the idea for using so-called blocking filters as a possible solution for a frequency reuse. Experimental data obtained on a real distribution network show that the use of blocking filters can, in certain cases, ensure high enough RF separation of the LV feeders belonging to the same substation. In some cases, even with the possibility to design and integrate effective blocking filters, the system needs to provide additional synchronization mechanisms for frequency reuse

    Multivariate time-frequency analysis

    No full text
    Recent advances in time-frequency theory have led to the development of high resolution time-frequency algorithms, such as the empirical mode decomposition (EMD) and the synchrosqueezing transform (SST). These algorithms provide enhanced localization in representing time varying oscillatory components over conventional linear and quadratic time-frequency algorithms. However, with the emergence of low cost multichannel sensor technology, multivariate extensions of time-frequency algorithms are needed in order to exploit the inter-channel dependencies that may arise for multivariate data. Applications of this framework range from filtering to the analysis of oscillatory components. To this end, this thesis first seeks to introduce a multivariate extension of the synchrosqueezing transform, so as to identify a set of oscillations common to the multivariate data. Furthermore, a new framework for multivariate time-frequency representations is developed using the proposed multivariate extension of the SST. The performance of the proposed algorithms are demonstrated on a wide variety of both simulated and real world data sets, such as in phase synchrony spectrograms and multivariate signal denoising. Finally, multivariate extensions of the EMD have been developed that capture the inter-channel dependencies in multivariate data. This is achieved by processing such data directly in higher dimensional spaces where they reside, and by accounting for the power imbalance across multivariate data channels that are recorded from real world sensors, thereby preserving the multivariate structure of the data. These optimized performance of such data driven algorithms when processing multivariate data with power imbalances and inter-channel correlations, and is demonstrated on the real world examples of Doppler radar processing.Open Acces

    Techniques for broadband power line communications: impulsive noise mitigation and adaptive modulation

    Get PDF
    The development of power line communication systems for broadband multimedia applications requires a comprehensive knowledge of the channel characteristics and the main peculiarities that may influence the communication over this channel. PLC has the potential to become the preferred connectivity solution to homes and offices. Additionally, indoor power line networks can serve as local area networks offering high-speed data, audio, video and multimedia applications. The PLC technology eliminates the need for new wires by using an already-existing infrastructure that is much more pervasive than any other wired system. Power line networks, however, present a hostile channel for communication signals. Noise, multipath, selective fading and attenuation are well-known peculiarities of power line grids and. Particularly, random impulsive noise characterized with short durations and very high amplitudes is identified as one of the major impairments that degrade the performance of PLC systems. Orthogonal frequency division multiplexing (OFDM) is the technique of choice for broadband PLC systems. OFDM minimizes the effects of multipath and provides high robustness against selective fading. It is also powerful in impulsive noise environments and performs better than single-carrier modulation methods. If an OFDM symbol is affected by impulsive noise, the effect is spread over multiple subcarriers due to the discrete Fourier transform at the receiver. In order to achieve reliable outcomes, suitable channel and noise models must be used in the investigations. In this thesis, the power line channel transfer function is modelled using a multipath model that was proposed by Zimmermann and Dostert [1], [2]. This model describes the signal propagation scenario and attenuation effects in power line networks. To represent the actual noise scenario in power networks, the noise is classified into two main classes: background noise and impulsive noise. To reduce the effect of impulsive noise, conventional time domain nonlinearities are examined in this thesis under PLC environments. An adaptive-threshold selection method based on minimum bit-error rate (BER) is proposed. At the cost of additional complexity, the effect of impulsive noise is further mitigated using a novel joint time-domain/frequency-domain suppression technique. Since channel coding is essential for most telecommunication systems, we examine convolutional codes combined with interleaving in a PLC channel impaired with AWGN and impulsive noise. The results show substantial performance gains especially in heavily-disturbed environments, where signal-to-noise ratio (SNR) gains of more than 15 dB can be achieved with a code rate of 1/3. Bit-interleaved convolutionally-coded OFDM completely eliminates the effect of impulsive noise in weakly-disturbed noise environments, while a negligible effect may remain in medium-disturbed environments. A new power-loading algorithm that minimizes the transmission power for target BER and data rate constraints is introduced in later chapters of the thesis. Results indicate that the algorithm achieves performance gains of more than 4 dB SNR over conventional OFDM systems. Furthermore, a novel minimum-complexity bit-loading algorithm that maximizes the data rate given BER and power level constraints is proposed in chapter 6. Results show that this bit-loading algorithm achieves almost identical performance as the incremental algorithm but with much lower complexity

    Models and analysis of vocal emissions for biomedical applications

    Get PDF
    This book of Proceedings collects the papers presented at the 3rd International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications, MAVEBA 2003, held 10-12 December 2003, Firenze, Italy. The workshop is organised every two years, and aims to stimulate contacts between specialists active in research and industrial developments, in the area of voice analysis for biomedical applications. The scope of the Workshop includes all aspects of voice modelling and analysis, ranging from fundamental research to all kinds of biomedical applications and related established and advanced technologies

    Ferroelectric liquid crystal spatial light modulators: devices and applications

    Get PDF

    Digital signal processing algorithms and structures for adaptive line enhancing

    Get PDF
    Imperial Users onl
    • …
    corecore