8 research outputs found

    Languages of games and play: A systematic mapping study

    Get PDF
    Digital games are a powerful means for creating enticing, beautiful, educational, and often highly addictive interactive experiences that impact the lives of billions of players worldwide. We explore what informs the design and construction of good games to learn how to speed-up game development. In particular, we study to what extent languages, notations, patterns, and tools, can offer experts theoretical foundations, systematic techniques, and practical solutions they need to raise their productivity and improve the quality of games and play. Despite the growing number of publications on this topic there is currently no overview describing the state-of-the-art that relates research areas, goals, and applications. As a result, efforts and successes are often one-off, lessons learned go overlooked, language reuse remains minimal, and opportunities for collaboration and synergy are lost. We present a systematic map that identifies relevant publications and gives an overview of research areas and publication venues. In addition, we categorize research perspectives along common objectives, techniques, and approaches, illustrated by summaries of selected languages. Finally, we distill challenges and opportunities for future research and development

    Designing Round-Trip Systems by Change Propagation and Model Partitioning

    Get PDF
    Software development processes incorporate a variety of different artifacts (e.g., source code, models, and documentation). For multiple reasons the data that is contained in these artifacts does expose some degree of redundancy. Ensuring global consistency across artifacts during all stages in the development of software systems is required, because inconsistent artifacts can yield to failures. Ensuring consistency can be either achieved by reducing the amount of redundancy or by synchronizing the information that is shared across multiple artifacts. The discipline of software engineering that addresses these problems is called Round-Trip Engineering (RTE). In this thesis we present a conceptual framework for the design RTE systems. This framework delivers precise definitions for essential terms in the context of RTE and a process that can be used to address new RTE applications. The main idea of the framework is to partition models into parts that require synchronization - skeletons - and parts that do not - clothings. Once such a partitioning is obtained, the relations between the elements of the skeletons determine whether a deterministic RTE system can be built. If not, manual decisions may be required by developers. Based on this conceptual framework, two concrete approaches to RTE are presented. The first one - Backpropagation-based RTE - employs change translation, traceability and synchronization fitness functions to allow for synchronization of artifacts that are connected by non-injective transformations. The second approach - Role-based Tool Integration - provides means to avoid redundancy. To do so, a novel tool design method that relies on role modeling is presented. Tool integration is then performed by the creation of role bindings between role models. In addition to the two concrete approaches to RTE, which form the main contributions of the thesis, we investigate the creation of bridges between technical spaces. We consider these bridges as an essential prerequisite for performing logical synchronization between artifacts. Also, the feasibility of semantic web technologies is a subject of the thesis, because the specification of synchronization rules was identified as a blocking factor during our problem analysis. The thesis is complemented by an evaluation of all presented RTE approaches in different scenarios. Based on this evaluation, the strengths and weaknesses of the approaches are identified. Also, the practical feasibility of our approaches is confirmed w.r.t. the presented RTE applications

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Model Checking and Model-Based Testing : Improving Their Feasibility by Lazy Techniques, Parallelization, and Other Optimizations

    Get PDF
    This thesis focuses on the lightweight formal method of model-based testing for checking safety properties, and derives a new and more feasible approach. For liveness properties, dynamic testing is impossible, so feasibility is increased by specializing on an important class of properties, livelock freedom, and deriving a more feasible model checking algorithm for it. All mentioned improvements are substantiated by experiments

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    A formal model of the Document Object Model

    Get PDF
    This is the final version. Available from AFP via the link in this recordIn this AFP entry, we formalize the core of the Document Object Model (DOM). At its core, the DOM defines a tree-like data structure for representing documents in general and HTML documents in particular. It is the heart of any modern web browser. Formalizing the key concepts of the DOM is a prerequisite for the formal reasoning over client-side JavaScript programs and for the analysis of security concepts in modern web browsers. We present a formalization of the core DOM, with focus on the node-tree and the operations defined on node-trees, in Isabelle/HOL. We use the formalization to verify the functional correctness of the most important functions defined in the DOM standard. Moreover, our formalization is 1) extensible, i.e., can be extended without the need of re-proving already proven properties and 2) executable, i.e., we can generate executable code from our specification

    Shadow SC DOM: A Formal Model of the Safely Composable Document Object Model with Shadow Roots

    Get PDF
    This is the final version. Available from AFP via the link in this recordIn this AFP entry, we extend our formalization of the safely composable DOM with Shadow Roots. Shadow roots are a recent proposal of the web community to support a component-based development approach for client-side web applications. Shadow roots are a significant extension to the DOM standard and, as web standards are condemned to be backward compatible, such extensions often result in complex specification that may contain unwanted subtleties that can be detected by a formalization. Our Isabelle/HOL formalization is, in the sense of object-orientation, an extension of our formalization of the core DOM and enjoys the same basic properties, i.e., it is extensible, i.e., can be extended without the need of re-proving already proven properties and executable, i.e., we can generate executable code from our specification. We exploit the executability to show that our formalization complies to the official standard of the W3C, respectively, the WHATWG
    corecore