66 research outputs found

    Security Analysis of Vendor Implementations of the OPC UA Protocol for Industrial Control Systems

    Get PDF
    The OPC UA protocol is an upcoming de-facto standard for building Industry 4.0 processes in Europe, and one of the few industrial protocols that promises security features to prevent attackers from manipulating and damaging critical infrastructures. Despite the importance of the protocol, challenges in the adoption of OPC UA's security features by product vendors, libraries implementing the standard, and end-users were not investigated so far. In this work, we systematically investigate 48 publicly available artifacts consisting of products and libraries for OPC UA and show that 38 out of the 48 artifacts have one (or more) security issues. We show that 7 OPC UA artifacts do not support the security features of the protocol at all. In addition, 31 artifacts that partially feature OPC UA security rely on incomplete libraries and come with misleading instructions. Consequently, relying on those products and libraries will result in vulnerable implementations of OPC UA security features. To verify our analysis, we design, implement, and demonstrate attacks in which the attacker can steal credentials exchanged between victims, eavesdrop on process information, manipulate the physical process through sensor values and actuator commands, and prevent the detection of anomalies

    Security Architecture for Point-to-Point Splitting Protocols

    Get PDF
    International audienceThe security of industrial supervisory control and data acquisition systems (SCADA) has become a major concern since the Stuxnet worm in 2010. As these systems are connected to the physical world, this makes them possibly hazardous if a malicious attacker is able to take over their control. SCADA can live up to 40 years, are particularly hard to patch, and quite often have no security feature at all. Thus, rather than securing them, network segregation is often used to prevent attackers from entering the industrial system. In this paper, we propose a generic solution: embed a point-to-point splitting protocol within a physical device, thus able to physically isolate networks, perform deep packet inspection and also provide encryption if necessary. We obtain a kind of next generation firewall, encompassing at least both diode and firewall features, for which conformity to security policies can be ensured. Then we define a set of associated security properties for such devices and the requirements for such a device's security architecture and filtering rules. Finally, we propose a secure hardware implementation

    Demystifying Internet of Things Security

    Get PDF
    Break down the misconceptions of the Internet of Things by examining the different security building blocks available in Intel Architecture (IA) based IoT platforms. This open access book reviews the threat pyramid, secure boot, chain of trust, and the SW stack leading up to defense-in-depth. The IoT presents unique challenges in implementing security and Intel has both CPU and Isolated Security Engine capabilities to simplify it. This book explores the challenges to secure these devices to make them immune to different threats originating from within and outside the network. The requirements and robustness rules to protect the assets vary greatly and there is no single blanket solution approach to implement security. Demystifying Internet of Things Security provides clarity to industry professionals and provides and overview of different security solutions What You'll Learn Secure devices, immunizing them against different threats originating from inside and outside the network Gather an overview of the different security building blocks available in Intel Architecture (IA) based IoT platforms Understand the threat pyramid, secure boot, chain of trust, and the software stack leading up to defense-in-depth Who This Book Is For Strategists, developers, architects, and managers in the embedded and Internet of Things (IoT) space trying to understand and implement the security in the IoT devices/platforms

    Kommunikation und Bildverarbeitung in der Automation

    Get PDF
    In diesem Open-Access-Tagungsband sind die besten Beiträge des 9. Jahreskolloquiums "Kommunikation in der Automation" (KommA 2018) und des 6. Jahreskolloquiums "Bildverarbeitung in der Automation" (BVAu 2018) enthalten. Die Kolloquien fanden am 20. und 21. November 2018 in der SmartFactoryOWL, einer gemeinsamen Einrichtung des Fraunhofer IOSB-INA und der Technischen Hochschule Ostwestfalen-Lippe statt. Die vorgestellten neuesten Forschungsergebnisse auf den Gebieten der industriellen Kommunikationstechnik und Bildverarbeitung erweitern den aktuellen Stand der Forschung und Technik. Die in den Beiträgen enthaltenen anschaulichen Beispiele aus dem Bereich der Automation setzen die Ergebnisse in den direkten Anwendungsbezug

    Cryptographic Role-Based Access Control, Reconsidered

    Get PDF
    A significant shortcoming of traditional access control mechanisms is their heavy reliance on reference monitors. Being single points of failure, monitors need to run in protected mode and have permanent online presence in order to handle all access requests. Cryptographic access control offers an alternative solution that provides better scalability and deployability. It relies on security guarantees of the underlying cryptographic primitives and the appropriate key distribution/management in the system. In order to rigorously study security guarantees that a cryptographic access control system can achieve, providing formal security definitions for the system is of great importance, since the security guarantee of the underlying cryptographic primitives cannot be directly translated into those of the system. In this paper, we follow the line of the existing studies on the cryptographic enforcement of Role-Based Access Control (RBAC). Inspired by the study focusing on the relation between the existing security definitions for such systems, we identify two types of attacks not described in the existing works. Therefore, we propose two new security definitions with the goal of appropriately modeling cryptographic enforcement of Role-Based Access Control policies and studying the relation between our new definitions and the existing ones. In addition, we show that the cost of supporting dynamic policy updates is inherently expensive by presenting two lower bounds for such systems that guarantee correctness and secure access

    Secrets Revealed in Container Images: An Internet-wide Study on Occurrence and Impact

    Full text link
    Containerization allows bundling applications and their dependencies into a single image. The containerization framework Docker eases the use of this concept and enables sharing images publicly, gaining high momentum. However, it can lead to users creating and sharing images that include private keys or API secrets-either by mistake or out of negligence. This leakage impairs the creator's security and that of everyone using the image. Yet, the extent of this practice and how to counteract it remains unclear. In this paper, we analyze 337,171 images from Docker Hub and 8,076 other private registries unveiling that 8.5% of images indeed include secrets. Specifically, we find 52,107 private keys and 3,158 leaked API secrets, both opening a large attack surface, i.e., putting authentication and confidentiality of privacy-sensitive data at stake and even allow active attacks. We further document that those leaked keys are used in the wild: While we discovered 1,060 certificates relying on compromised keys being issued by public certificate authorities, based on further active Internet measurements, we find 275,269 TLS and SSH hosts using leaked private keys for authentication. To counteract this issue, we discuss how our methodology can be used to prevent secret leakage and reuse.Comment: 15 pages, 7 figure

    Information security and assurance : Proceedings international conference, ISA 2012, Shanghai China, April 2012

    Full text link

    A Review of Digital Twins and their Application in Cybersecurity based on Artificial Intelligence

    Full text link
    The potential of digital twin technology is yet to be fully realized due to its diversity and untapped potential. Digital twins enable systems' analysis, design, optimization, and evolution to be performed digitally or in conjunction with a cyber-physical approach to improve speed, accuracy, and efficiency over traditional engineering methods. Industry 4.0, factories of the future, and digital twins continue to benefit from the technology and provide enhanced efficiency within existing systems. Due to the lack of information and security standards associated with the transition to cyber digitization, cybercriminals have been able to take advantage of the situation. Access to a digital twin of a product or service is equivalent to threatening the entire collection. There is a robust interaction between digital twins and artificial intelligence tools, which leads to strong interaction between these technologies, so it can be used to improve the cybersecurity of these digital platforms based on their integration with these technologies. This study aims to investigate the role of artificial intelligence in providing cybersecurity for digital twin versions of various industries, as well as the risks associated with these versions. In addition, this research serves as a road map for researchers and others interested in cybersecurity and digital security.Comment: 60 pages, 8 Figures, 15 Table

    Information Security in Smart Grid Demonstration Environment

    Get PDF
    The ever growing population and need for energy has culminated in an energy crisis. Old, traditional energy sources are running low and the transition to renewable ones has begun. The electric grid, however, is very old, being inefficient and incapable of meeting the needs of today. One solution for these problems is to utilize a two-way flow of electricity and information, also known as Smart Grid. As Smart Grid utilizes information and communications technology, it will be exposed to information security threats. Smart Grid comprises of many systems, creating a complex automation environment. Thus, even if making Smart Grid secure is troublesome, it is essential to ensure its security since the consequences of successful attacks can be disastrous. This thesis is part of CLEEN SHOK Smart Grids and Energy Markets project and studies the information security of the Smart Grid demonstration environment. The main goals are to analyze and test the information security of the Smart Grid implementation, and to generate a best practice information security checklist for different players in the Smart Grid environment. The thesis is divided into four phases. In the literature study the focus is on information security landscape and features, as well as Smart Grid on general level. This phase includes a presentation of the conceptual model of Smart Grid and the demonstration environment on a general level. In the analysis demonstration environment is analyzed through threat modelling and closer examination of the demonstration equipment. The threat model works from the customer´s point of view, concentrating on home energy management system, and providing high abstract level analysis, whereas the examination of the equipment provides more specific analysis. In the testing, the demonstration environment is tested, and the results are presented. This phase also includes the testing layout and introduces the software used for the testing. The final section focuses on generating a best practice security list. This checklist provides the top 10 critical controls of information security for the Smart Grid environment, especially for a home automation environment. In the course of the study, it is indicated that the information security of the demonstration environment has shortages. The most common vulnerabilities are due to wrong software configurations, and using vulnerable versions of software. The most critical part of the demonstration environment is the end user's device, which in this study was ThereGate. This equipment has many security issues that need to be taken care of. Se-curing ThereGate is essential in regard to the entire system's dependability and security. To secure dependable Smart Grid, stronger methods like strong client authentication are required. As long as standards only recommend and do not require information security methods, like encryption, they will not be used, and thus, they will make the system more vulnerable. As a result, it can be said that more security research is required in order to secure a dependable Smart Grid
    • …
    corecore