88,769 research outputs found

    Protein kinase C in cellular transformation: a valid target for therapy?

    Get PDF
    The protein kinase C (PKC) family of serine/threonine protein kinases share structural homology, while exhibiting substantial functional diversity. PKC isoforms are ubiquitously expressed in tissues which makes it difficult to define roles for individual isoforms, with complexity compounded by the finding that PKC isoforms can co-operate with or antagonize other PKC family members. A number of studies suggest the involvement of PKC family members in regulating leukaemic cell survival and proliferation. Chronic lymphocytic leukaemia (CLL), the most common leukaemia in the Western world, exhibits dysregulated expression of PKC isoforms, with recent reports indicating that PKCβ and δ play a critical role in B-cell development, due to their ability to link the B-cell receptor (BCR) with downstream signalling pathways. Given the prognostic significance of the BCR in CLL, inhibition of these BCR/PKC-mediated signalling pathways is of therapeutic relevance. The present review discusses the emerging role of PKC isoforms in the pathophysiology of CLL and assesses approaches that have been undertaken to modulate PKC activity

    Classical, novel and atypical isoforms of PKC stimulate ANF- and TRE/AP-1-regulated-promoter activity in ventricular cardiomyocytes

    Get PDF
    Cultured neonatal rat ventricular myocytes were co-transfected with expression plasmids encoding protein kinase C (PKC) isoforms from each of the PKC subfamilies (classical PKC-α, novel PKC-ε or atypical PKC-ξ) together with an atrial natriuretic factor (ANF) reporter plasmid. Each PKC had been rendered constitutively active by a single Ala→Glu mutation or a small deletion in the inhibitory pseudosubstrate site. cPKC-α, nPKC-ε or aPKC-ξ expression plasmids each stimulated ANF-promoter activity and expression of a reporter gene under the control of a 12-O-tetradecanoylphorbol 13-acetate-response element (TRE). Upregulation of the ANF promoter is characteristic of the hypertrophic response in the heart ventricle and a TRE is present in the ANF promoter. Thus all subfamilies of PKC may have the potential to contribute to hypertrophic response in cardiomyocytes

    H3 histamine receptor-mediated activation of protein kinase calpha inhibits the growth of cholangiocarcinoma in vitro and in vivo

    Get PDF
    Histamine regulates functions via four receptors (HRH1, HRH2, HRH3, and HRH4). The D-myo-inositol 1,4,5-trisphosphate (IP(3))/Ca(2+)/protein kinase C (PKC)/mitogen-activated protein kinase pathway regulates cholangiocarcinoma growth. We evaluated the role of HRH3 in the regulation of cholangiocarcinoma growth. Expression of HRH3 in intrahepatic and extrahepatic cell lines, normal cholangiocytes, and human tissue arrays was measured. In Mz-ChA-1 cells stimulated with (R)-(alpha)-(-)-methylhistamine dihydrobromide (RAMH), we measured (a) cell growth, (b) IP(3) and cyclic AMP levels, and (c) phosphorylation of PKC and mitogen-activated protein kinase isoforms. Localization of PKC alpha was visualized by immunofluorescence in cell smears and immunoblotting for PKC alpha in cytosol and membrane fractions. Following knockdown of PKC alpha, Mz-ChA-1 cells were stimulated with RAMH before evaluating cell growth and extracellular signal-regulated kinase (ERK)-1/2 phosphorylation. In vivo experiments were done in BALB/c nude mice. Mice were treated with saline or RAMH for 44 days and tumor volume was measured. Tumors were excised and evaluated for proliferation, apoptosis, and expression of PKC alpha, vascular endothelial growth factor (VEGF)-A, VEGF-C, VEGF receptor 2, and VEGF receptor 3. HRH3 expression was found in all cells. RAMH inhibited the growth of cholangiocarcinoma cells. RAMH increased IP(3) levels and PKC alpha phosphorylation and decreased ERK1/2 phosphorylation. RAMH induced a shift in the localization of PKC alpha expression from the cytosolic domain into the membrane region of Mz-ChA-1 cells. Silencing of PKC alpha prevented RAMH inhibition of Mz-ChA-1 cell growth and ablated RAMH effects on ERK1/2 phosphorylation. In vivo, RAMH decreased tumor growth and expression of VEGF and its receptors; PKC alpha expression was increased. RAMH inhibits cholangiocarcinoma growth by PKC alpha-dependent ERK1/2 dephosphorylation. Modulation of PKC alpha by histamine receptors may be important in regulating cholangiocarcinoma growth. (Mol Cancer Res 2009;7(10):1704-13

    Androgen receptor phosphorylation status at serine 578 predicts poor outcome in prostate cancer patients

    Get PDF
    Purpose: Prostate cancer growth is dependent upon androgen receptor (AR) activation, regulated via phosphorylation. Protein kinase C (PKC) is one kinase that can mediate AR phosphorylation. This study aimed to establish if AR phosphorylation by PKC is of prognostic significance. Methods: Immunohistochemistry for AR, AR phosphorylated at Ser-81 (pARS81), AR phosphorylated at Ser-578 (pARS578), PKC and phosphorylated PKC (pPKC) was performed on 90 hormone-naïve prostate cancer specimens. Protein expression was quantified using the weighted histoscore method and examined with regard to clinico-pathological factors and outcome measures; time to biochemical relapse, survival from biochemical relapse and disease-specific survival. Results: Nuclear PKC expression strongly correlated with nuclear pARS578 (c.c. 0.469, p=0.001) and cytoplasmic pARS578 (c.c. 0.426 p=0.002). High cytoplasmic and nuclear pARS578 were associated with disease-specific survival (p<0.001 and p=0.036 respectively). High nuclear PKC was associated with lower disease-specific survival when combined with high pARS578 in the cytoplasm (p=0.001) and nucleus (p=0.038). Combined high total pARS81 and total pARS578 was associated with decreased disease-specific survival (p=0.005) Conclusions: pARS578 expression is associated with poor outcome and is a potential independent prognostic marker in hormone-naïve prostate cancer. Furthermore, PKC driven AR phosphorylation may promote prostate cancer progression and provide a novel therapeutic target

    Protein kinase C-dependent signaling controls the midgut epithelial barrier to malaria parasite infection in anopheline mosquitoes.

    Get PDF
    Anopheline mosquitoes are the primary vectors of parasites in the genus Plasmodium, the causative agents of malaria. Malaria parasites undergo a series of complex transformations upon ingestion by the mosquito host. During this process, the physical barrier of the midgut epithelium, along with innate immune defenses, functionally restrict parasite development. Although these defenses have been studied for some time, the regulatory factors that control them are poorly understood. The protein kinase C (PKC) gene family consists of serine/threonine kinases that serve as central signaling molecules and regulators of a broad spectrum of cellular processes including epithelial barrier function and immunity. Indeed, PKCs are highly conserved, ranging from 7 isoforms in Drosophila to 16 isoforms in mammals, yet none have been identified in mosquitoes. Despite conservation of the PKC gene family and their potential as targets for transmission-blocking strategies for malaria, no direct connections between PKCs, the mosquito immune response or epithelial barrier integrity are known. Here, we identify and characterize six PKC gene family members--PKCδ, PKCε, PKCζ, PKD, PKN, and an indeterminate conventional PKC--in Anopheles gambiae and Anopheles stephensi. Sequence and phylogenetic analyses of the anopheline PKCs support most subfamily assignments. All six PKCs are expressed in the midgut epithelia of A. gambiae and A. stephensi post-blood feeding, indicating availability for signaling in a tissue that is critical for malaria parasite development. Although inhibition of PKC enzymatic activity decreased NF-κB-regulated anti-microbial peptide expression in mosquito cells in vitro, PKC inhibition had no effect on expression of a panel of immune genes in the midgut epithelium in vivo. PKC inhibition did, however, significantly increase midgut barrier integrity and decrease development of P. falciparum oocysts in A. stephensi, suggesting that PKC-dependent signaling is a negative regulator of epithelial barrier function and a potential new target for transmission-blocking strategies

    Phosphoinositide-dependent protein kinase-1 (PDK1)-independent activation of the protein kinase C substrate, protein kinase D

    Get PDF
    Phosphoinoisitide dependent kinase l (PDK1) is proposed to phosphorylate a key threonine residue within the catalytic domain of the protein kinase C (PKC) superfamily that controls the stability and catalytic competence of these kinases. Hence, in PDK1-null embryonic stem cells intracellular levels of PKCalpha, PKCbeta1, PKCgamma, and PKCepsilon are strikingly reduced. Although PDK1-null cells have reduced endogenous PKC levels they are not completely devoid of PKCs and the integrity of downstream PKC effector pathways in the absence of PDK1 has not been determined. In the present report, the PDK1 requirement for controlling the phosphorylation and activity of a well characterised substrate for PKCs, the serine kinase protein kinase D, has been examined. The data show that in embryonic stem cells and thymocytes loss of PDK1 does not prevent PKC-mediated phosphorylation and activation of protein kinase D. These results reveal that loss of PDK1 does not functionally inactivate all PKC-mediated signal transduction

    Role of protein kinase C-delta in the regulation of collagen gene expression in scleroderma fibroblasts

    Get PDF
    Working with cultured dermal fibroblasts derived from control individuals and patients with systemic sclerosis (SSc), we have examined the effects of protein kinase C-delta (PKC-delta) on type I collagen biosynthesis and steady-state levels of COL1A1 and COL3A1 mRNAs. Rottlerin, a specific inhibitor of PKC-delta, exerted a powerful, dose-dependent inhibition of type I and type III collagen gene expression in normal and SSc cells. Optimal rottlerin concentrations caused a 70-90% inhibition of type I collagen production, a \u3e80% reduction in COL1A1 mRNA, and a \u3e70% reduction in COL3A1 mRNA in both cell types. In vitro nuclear transcription assays and transient transfections with COL1A1 promoter deletion constructs demonstrated that rottlerin profoundly reduced COL1A1 transcription and that this effect required a 129-bp promoter region encompassing nucleotides -804 to -675. This COL1A1 segment imparted rottlerin sensitivity to a heterologous promoter. Cotransfections of COL1A1 promoter constructs with a dominant-negative PKC-delta expression plasmid showed that suppression of this kinase silenced COL1A1 promoter activity. The results indicate that PKC-delta participates in the upregulation of collagen gene transcription in SSc and suggest that treatment with PKC-delta inhibitors could suppress fibrosis in this disease

    A novel PKC activating molecule promotes neuroblast differentiation and delivery of newborn neurons in brain injuries

    Get PDF
    Neural stem cells are activated within neurogenic niches in response to brain injuries. This results in the production of neuroblasts, which unsuccessfully attempt to migrate toward the damaged tissue. Injuries constitute a gliogenic/non-neurogenic niche generated by the presence of anti-neurogenic signals, which impair neuronal differentiation and migration. Kinases of the protein kinase C (PKC) family mediate the release of growth factors that participate in different steps of the neurogenic process, particularly, novel PKC isozymes facilitate the release of the neurogenic growth factor neuregulin. We have demonstrated herein that a plant derived diterpene, (EOF2; CAS number 2230806-06-9), with the capacity to activate PKC facilitates the release of neuregulin 1, and promotes neuroblasts differentiation and survival in cultures of subventricular zone (SVZ) isolated cells in a novel PKC dependent manner. Local infusion of this compound in mechanical cortical injuries induces neuroblast enrichment within the perilesional area, and noninvasive intranasal administration of EOF2 promotes migration of neuroblasts from the SVZ towards the injury, allowing their survival and differentiation into mature neurons, being some of them cholinergic and GABAergic. Our results elucidate the mechanism of EOF2 promoting neurogenesis in injuries and highlight the role of novel PKC isozymes as targets in brain injury regeneration

    The use of time-resolved fluorescence imaging in the study of protein kinase C localisation in cells

    Get PDF
    Background: Two-photon-excitation fluorescence lifetime imaging (2P-FLIM) was used to investigate the association of protein kinase C alpha (PKCα) with caveolin in CHO cells. PKCα is found widely in the cytoplasm and nucleus in most cells. Upon activation, as a result of increased intracellular Ca2+ and production of DAG, through G-protein coupled-phospholipase C signalling, PKC translocates to a variety of regions in the cell where it phosphorylates and interacts with many signalling pathways. Due to its wide distribution, discerning a particular interaction from others within the cell is extremely difficult. Results: Fluorescence energy transfer (FRET), between GFP-PKCα and DsRed-caveolin, was used to investigate the interaction between caveolin and PKC, an aspect of signalling that is poorly understood. Using 2P-FLIM measurements, the lifetime of GFP was found to decrease (quench) in certain regions of the cell from ~2.2 ns to ~1.5 ns when the GFP and DsRed were sufficiently close for FRET to occur. This only occurred when intracellular Ca2+ increased or in the presence of phorbol ester, and was an indication of PKC and caveolin co-localisation under these conditions. In the case of phorbol ester stimulated PKC translocation, as commonly used to model PKC activation, three PKC areas could be delineated. These included PKCα that was not associated with caveolin in the nucleus and cytoplasm, PKCα associated with caveolin in the cytoplasm/perinuclear regions and probably in endosomes, and PKC in the peripheral regions of the cell, possibly indirectly interacting with caveolin. Conclusion: Based on the extent of lifetime quenching observed, the results are consistent with a direct interaction between PKCα and caveolin in the endosomes, and possibly an indirect interaction in the peripheral regions of the cell. The results show that 2P-FLIM-FRET imaging offers an approach that can provide information not only confirming the occurrence of specific protein-protein interactions but where they occur within the cell

    Activation of native TRPC1/C5/C6 channels by endothelin-1 is mediated by both PIP3 and PIP2 in rabbit coronary artery myocytes

    Get PDF
    We investigate activation mechanisms of native TRPC1/C5/C6 channels (termed TRPC1 channels) by stimulation of endothelin-1 (ET-1) receptor subtypes in freshly dispersed rabbit coronary artery myocytes using single channel recording and immunoprecipitation techniques. ET-1 evoked non-selective cation channel currents with a unitary conductance of 2.6 pS which were not inhibited by either ET(A) or ET(B) receptor antagonists, respectively BQ-123 and BQ788, when administered separately. However, in the presence of both antagonists, ET-1-evoked channel activity was abolished indicating that both ET(A) and ET(B) receptor stimulation activate this conductance. Stimulation of both ET(A) and ET(B) receptors evoked channel activity which was inhibited by the protein kinase C (PKC) inhibitor chelerythrine and by anti-TRPC1 antibodies indicating that activation of both receptor subtypes causes TRPC1 channel activation by a PKC-dependent mechanism. ET(A) receptor-mediated TRPC1 channel activity was selectively inhibited by phosphoinositol-3-kinase (PI-3-kinase) inhibitors wortmannin (50 nm) and PI-828 and by antibodies raised against phosphoinositol-3,4,5-trisphosphate (PIP(3)), the product of PI-3-kinase-mediated phosphorylation of phosphatidylinositol 4,5-bisphosphate (PIP(2)). Moreover, exogenous application of diC8-PIP(3) stimulated PKC-dependent TRPC1 channel activity. These results indicate that stimulation of ET(A) receptors evokes PKC-dependent TRPC1 channel activity through activation of PI-3-kinase and generation of PIP(3). In contrast, ET(B) receptor-mediated TRPC1 channel activity was inhibited by the PI-phospholipase C (PI-PLC) inhibitor U73122. 1-Oleoyl-2-acetyl-sn-glycerol (OAG), an analogue of diacylglycerol (DAG), which is a product of PI-PLC, also activated PKC-dependent TRPC1 channel activity. OAG-induced TRPC1 channel activity was inhibited by anti-phosphoinositol-4,5-bisphosphate (PIP(2)) antibodies and high concentrations of wortmannin (20 μm) which depleted tissue PIP(2) levels. In addition exogenous application of diC8-PIP(2) activated PKC-dependent TRPC1 channel activity. These data indicate that stimulation of ET(B) receptors evokes PKC-dependent TRPC1 activity through PI-PLC-mediated generation of DAG and requires a permissive role of PIP(2). In conclusion, we provide the first evidence that stimulation of ET(A) and ET(B) receptors activate native PKC-dependent TRPC1 channels through two distinct phospholipids pathways involving a novel action of PIP(3), in addition to PIP(2), in rabbit coronary artery myocytes
    • …
    corecore