4 research outputs found

    Path following hybrid control for vehicle stability applied to industrial forklifts

    Full text link
    The paper focuses on a closed-loop hybrid controller (kinematic and dynamic) for path following approaches with industrial forklifts carrying heavy loads at high speeds, where aspects such as vehicle stability, safety, slippage and comfort are considered. The paper first describes a method for generating Double Continuous Curvature (DCC) paths for non-holonomic wheeled mobile robots, which is the basis of the proposed kinematic controller. The kinematic controller generates a speed profile, based on slow-in and fast-out policy, and a curvature profile recomputing DCC paths in closed-loop. The dynamic controller determines maximum values for decelerations and curvatures, as well as bounded sharpness so that instantaneous vehicle stability conditions can be guaranteed against lateral and frontal tip-overs. One of the advantages of the proposed method, with respect to full dynamic controllers, is that it does not require dynamic parameters to be estimated for modelling, which in general can be a difficult task. The proposed kinematic dynamic controller is afterwards compared with a classic kinematic controller like Pure-Pursuit. For that purpose, in our hybrid control structure we have just replaced the proposed kinematic controller with Pure-Pursuit. Several metrics, such as settling time, overshoot, safety and comfort have been analysed.This work was supported by VALi+d and PROMETEO Programs (Conselleria d'Educacio, Generalitat Valenciana), DIVISAMOS (DPI-2009-14744-C03-01) and SAFEBUS (IPT-2011-1165-370000): Ministry of Economy and Competitivity.Girbés, V.; Armesto Ángel, L.; Tornero Montserrat, J. (2014). Path following hybrid control for vehicle stability applied to industrial forklifts. Robotics and Autonomous Systems. 62(6):910-922. https://doi.org/10.1016/j.robot.2014.01.004S91092262

    Clothoid-based Planning and Control in Intelligent Vehicles (Autonomous and Manual-Assisted Driving)

    Full text link
    [EN] Nowadays, there are many electronic products that incorporate elements and features coming from the research in the field of mobile robotics. For instance, the well-known vacuum cleaning robot Roomba by iRobot, which belongs to the field of service robotics, one of the most active within the sector. There are also numerous autonomous robotic systems in industrial warehouses and plants. It is the case of Autonomous Guided Vehicles (AGVs), which are able to drive completely autonomously in very structured environments. Apart from industry and consumer electronics, within the automotive field there are some devices that give intelligence to the vehicle, derived in most cases from advances in mobile robotics. In fact, more and more often vehicles incorporate Advanced Driver Assistance Systems (ADAS), such as navigation control with automatic speed regulation, lane change and overtaking assistant, automatic parking or collision warning, among other features. However, despite all the advances there are some problems that remain unresolved and can be improved. Collisions and rollovers stand out among the most common accidents of vehicles with manual or autonomous driving. In fact, it is almost impossible to guarantee driving without accidents in unstructured environments where vehicles share the space with other moving agents, such as other vehicles and pedestrians. That is why searching for techniques to improve safety in intelligent vehicles, either autonomous or manual-assisted driving, is still a trending topic within the robotics community. This thesis focuses on the design of tools and techniques for planning and control of intelligent vehicles in order to improve safety and comfort. The dissertation is divided into two parts, the first one on autonomous driving and the second one on manual-assisted driving. The main link between them is the use of clothoids as mathematical formulation for both trajectory generation and collision detection. Among the problems solved the following stand out: obstacle avoidance, rollover avoidance and advanced driver assistance to avoid collisions with pedestrians.[ES] En la actualidad se comercializan infinidad de productos de electrónica de consumo que incorporan elementos y características procedentes de avances en el sector de la robótica móvil. Por ejemplo, el conocido robot aspirador Roomba de la empresa iRobot, el cual pertenece al campo de la robótica de servicio, uno de los más activos en el sector. También hay numerosos sistemas robóticos autónomos en almacenes y plantas industriales. Es el caso de los vehículos autoguiados (AGVs), capaces de conducir de forma totalmente autónoma en entornos muy estructurados. Además de en la industria y en electrónica de consumo, dentro del campo de la automoción también existen dispositivos que dotan de cierta inteligencia al vehículo, derivados la mayoría de las veces de avances en robótica móvil. De hecho, cada vez con mayor frecuencia los vehículos incorporan sistemas avanzados de asistencia al conductor (ADAS por sus siglas en inglés), tales como control de navegación con regulación automática de velocidad, asistente de cambio de carril y adelantamiento, aparcamiento automático o aviso de colisión, entre otras prestaciones. No obstante, pese a todos los avances siguen existiendo problemas sin resolver y que pueden mejorarse. La colisión y el vuelco destacan entre los accidentes más comunes en vehículos con conducción tanto manual como autónoma. De hecho, la dificultad de conducir en entornos desestructurados compartiendo el espacio con otros agentes móviles, tales como coches o personas, hace casi imposible garantizar la conducción sin accidentes. Es por ello que la búsqueda de técnicas para mejorar la seguridad en vehículos inteligentes, ya sean de conducción autónoma o manual asistida, es un tema que siempre está en auge en la comunidad robótica. La presente tesis se centra en el diseño de herramientas y técnicas de planificación y control de vehículos inteligentes, para la mejora de la seguridad y el confort. La disertación se ha dividido en dos partes, la primera sobre conducción autónoma y la segunda sobre conducción manual asistida. El principal nexo de unión es el uso de clotoides como elemento de generación de trayectorias y detección de colisiones. Entre los problemas que se resuelven destacan la evitación de obstáculos, la evitación de vuelcos y la asistencia avanzada al conductor para evitar colisiones con peatones.[CA] En l'actualitat es comercialitzen infinitat de productes d'electrònica de consum que incorporen elements i característiques procedents d'avanços en el sector de la robòtica mòbil. Per exemple, el conegut robot aspirador Roomba de l'empresa iRobot, el qual pertany al camp de la robòtica de servici, un dels més actius en el sector. També hi ha nombrosos sistemes robòtics autònoms en magatzems i plantes industrials. És el cas dels vehicles autoguiats (AGVs), els quals són capaços de conduir de forma totalment autònoma en entorns molt estructurats. A més de en la indústria i en l'electrònica de consum, dins el camp de l'automoció també existeixen dispositius que doten al vehicle de certa intel·ligència, la majoria de les vegades derivats d'avanços en robòtica mòbil. De fet, cada vegada amb més freqüència els vehicles incorporen sistemes avançats d'assistència al conductor (ADAS per les sigles en anglés), com ara control de navegació amb regulació automàtica de velocitat, assistent de canvi de carril i avançament, aparcament automàtic o avís de col·lisió, entre altres prestacions. No obstant això, malgrat tots els avanços segueixen existint problemes sense resoldre i que poden millorar-se. La col·lisió i la bolcada destaquen entre els accidents més comuns en vehicles amb conducció tant manual com autònoma. De fet, la dificultat de conduir en entorns desestructurats compartint l'espai amb altres agents mòbils, tals com cotxes o persones, fa quasi impossible garantitzar la conducció sense accidents. És per això que la recerca de tècniques per millorar la seguretat en vehicles intel·ligents, ja siguen de conducció autònoma o manual assistida, és un tema que sempre està en auge a la comunitat robòtica. La present tesi es centra en el disseny d'eines i tècniques de planificació i control de vehicles intel·ligents, per a la millora de la seguretat i el confort. La dissertació s'ha dividit en dues parts, la primera sobre conducció autònoma i la segona sobre conducció manual assistida. El principal nexe d'unió és l'ús de clotoides com a element de generació de trajectòries i detecció de col·lisions. Entre els problemes que es resolen destaquen l'evitació d'obstacles, l'evitació de bolcades i l'assistència avançada al conductor per evitar col·lisions amb vianants.Girbés Juan, V. (2016). Clothoid-based Planning and Control in Intelligent Vehicles (Autonomous and Manual-Assisted Driving) [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/65072TESI

    Generación de Trayectorias de Curvatura Continua para el Seguimiento de Líneas basado en Visión Artificial

    Full text link
    Desarrollo matemático y análisis de nuevas técnicas para la generación de trayectorias de curvatura continua aplicado al problema del seguimiento de línea con curvatura y brusquedad acotadas.Girbés Juan, V. (2010). Generación de Trayectorias de Curvatura Continua para el Seguimiento de Líneas basado en Visión Artificial. http://hdl.handle.net/10251/12881Archivo delegad

    Diseño Optimizado, Modelado Dinámico - Cinemático y Fabricación de un AUV, Integrando Herramientas CAE para su Validación

    Full text link
    [ES] La robótica submarina ha sido uno de los campos de investigación que más interés ha despertado en las últimas décadas y con esto ha logrado una evolución de dicho campo. Avances de la robótica submarina han sido implementados en áreas diferentes a la investigación, dentro de los beneficiados está el sector comercial y el sector militar, así como la academia. Por otra parte, avances tecnológicos de diferentes áreas se incorporan a la robótica submarina, principalmente en los sistemas electrónicos los que más estimulan el desarrollo de todo lo relacionado con los vehículos submarinos, por lo tanto, se generan progresos en sistemas de control además del diseño mecánico y estructural. Esta tesis se centró en el diseño y construcción de un vehículo autónomo submarino para el proyecto DIVISAMOS. A partir del análisis del estado actual de la robótica submarina, el diseño planteado recoge todos los aspectos favorables de los vehículos existentes, de esta forma se tienen características que optimizan el vehículo, otorgándole versatilidad y eficiencia de funcionamiento. En el proceso investigativo se dirigieron esfuerzos, principalmente a la integración de métodos de diseño mecánico que optimizaron las características del vehículo que se construyó, presentando así un vehículo híbrido con desplazamientos eficientes y con posibilidad de desarrollar misiones que requieran hoovering. Cabe destacar que los métodos de diseño presentados en esta tesis, permiten incorporar sistemas de sensores para desarrollo de misiones de monitoreo, Localización y Mapeo Simultáneos (SLAM, por sus siglas en inglés) batimetría de ambientes submarinos con generación de datos georreferenciados, de alta resolución y su proyección cartográfica. Con todo esto se puede asegurar que se construyó un vehículo de altas prestaciones. Con el análisis de los resultados obtenidos con la implementación de Dinámica de Fluidos Computacional (CFD, por sus siglas en inglés), se logró que el vehículo tenga bajo consumo de energía ya que se han estudiado a fondo aspectos de la forma hidrodinámica del casco, del vehículo para reducir la fuerza de arrastre. Dentro de los resultados a desatacar en este aspecto se presenta un modelo que incorpora el cálculo en tiempo real, de las fuerzas debidas al arrastre generado por las corrientes de agua que interactúan con el casco del vehículo, reduciendo con esto el alto costo computacional de los análisis CFD y enriqueciendo el modelado dinámico. El modelo dinámico y cinemático de un vehículo autónomo submarino (AUV, por sus siglas en inglés), reviste un mayor grado de complejidad debido a que al sumergirse, depende de la navegación inercial que funciona basada en las mediciones de los instrumentos y los sistemas de referencia para determinar su posición. Las matrices de transformación son un método eficaz, usado para el modelado matemático de brazos robot, en esta tesis se plateó un modelo matemático hibrido, que utiliza matrices de transformación para plantear la cinemática del AUV, éste modelo tiene la particularidad de permitir agregar elementos al modelo inicial, continuando con la misma formulación resultando de gran utilidad para casos en los que el AUV realiza misiones en las que manipulan objetos y debido a esto se incorpora un brazo robot.[CA] La robòtica submarina ha sigut un dels camps d'investigació que més interés ha despertat en les últimes dècades, açò ha aconseguit una evolució del dit camp. Avanços de la robòtica submarina han sigut implementats en àrees diferents de la investigació, dins dels beneficiats està el sector comercial i el sector militar així com l'acadèmia. D'altra banda, avanços tecnològics de diferents àrees s'incorporen a la robòtica submarina, principalment són els sistemes electrònics els que més estimulen el desenrotllament de tot allò que s'ha relacionat amb els vehicles submarins, per tant es generen progressos en sistemes de control a més del disseny mecànic i estructural. Esta tesi es va centrar en el disseny i construcció d'un vehicle autònom submarí per al projecte DIVISAMOS. A partir de l'anàlisi de l'estat actual de la robòtica submarina, el disseny plantejat arreplega tots els aspectes favorables dels vehicles existents, d'esta manera es tenen característiques que optimitzen el vehicle atorgant-li versatilitat i eficiència de funcionament. En el procés investigativo es van dirigir esforços principalment a la integració de mètodes de disseny mecànic que van optimitzar les característiques del vehicle que es va construir, presentant així un vehicle híbrid amb desplaçaments eficients i possibilitat de desenrotllar missions que requerisquen hoovering. Cal destacar que els mètodes de disseny presentats en esta tesi permeten incorporar sistemes de sensors per a desenrotllament de missions de monitoreo, SLAM, batimetria d'ambients submarins amb generació de dades geo-referenciats d'alta resolució i la seua projecció cartogràfica. Amb tot açò es pot assegurar que es va construir un vehicle d'altes prestacions. Amb l'anàlisi dels resultats obtinguts amb la implementació de Dinàmica de Fluids Computacional (CFD, per les seues sigles en anglés) es va aconseguir que el vehicle tinga baix consum d'energia ja que s'han estudiat a fons aspectes de la forma hidrodinàmica del casc del vehicle per a reduir la força d'arrossegament. Dins dels resultats a descordar en este aspecte es presenta un model que incorpora el càlcul en temps real de les forces degudes a l'arrossegament generat pels corrents d'aigua que interactuen amb el casc del vehicle, reduint amb açò l'alt cost computacional de les anàlisis CFD i enriquint el modelatge dinàmic El model dinàmic i cinemático d'un Vehicle Autònom Submarí (AUV, per les seues sigles en anglés) revist un major grau de complexitat pel fet que al submergir-se depén de la navegació inercial que funciona basada en els mesuraments dels instruments i els sistemes de referència per a determinar la seua posició. Les matrius de transformació són un mètode eficaç usat per al modelatge matemàtic de braços robot, en esta tesi es va platejar un model matemàtic híbrid que utilitza matrius de transformació per a plantejar la cinemàtica del' AUV, este model té la particularitat de permetre agregar elements al model inicial continuant amb la mateixa formulació, resultant gran utilitat per a casos en què l'AUV realitza missions en què manipulen objectes i a causa d'açò incorpora un braç robot.[EN] Underwater robotics has been one of the fields of research that has awakened most in recent decades, this has achieved an evolution of this field. Advances in underwater robotics have been implemented in areas other than research, within the benefits are the commercial sector and the military sector as well as the academy. Underwater robotics has been one of the fields of research that has awakened most in recent decades, this has achieved an evolution of this field. Advances in underwater robotics have been implemented in areas other than research, within the benefits is the commercial sector and the military sector as well as the academy. The development of everything related to underwater vehicles, therefore progress is made in control systems in addition to the mechanical and structural design. This thesis focused on the design and construction of an underwater autonomous vehicle for the DIVISAMOS project. From the analysis of the current state of underwater robotics, the proposed design includes all the favorable aspects of the existing vehicles, in this way it has characteristics that optimize the vehicle, giving it versatility and efficiency of operation. In the research process, it was mainly aimed at the integration of mechanical design methods that optimize the characteristics of the vehicle that was built, thus presenting a hybrid truck with efficient displacements and the possibility of development. It should be noted that the design methods presented in this test incorporate sensor systems for the development of monitoring missions, Simultaneous Localization and Mapping (SLAM), the bathymetry of submarine environments with high-resolution georeferenced data generation and its cartographic projection. With all this you can ensure that a high-performance vehicle was built. With the analysis of the results obtained with the implementation of Computational Fluid Dynamics (CFD) was achieved that the vehicle has low power consumption and that has been thoroughly studied aspects of the hydrodynamic shape of the vehicle's hull to reduce the drag force. Within the results of this aspect a model is presented that incorporates the calculation in real time of the forces for the analysis of the drag generated by the water currents that interact with the hull of the vehicle, reducing with this the high computational cost of the CFD analysis and enriching dynamic modeling. The dynamic and kinematic model of an Autonomous Underwater Vehicle (AUV) revises a greater degree of complexity that depends on the inertial navigation that works in the measurements of the instruments and the reference to determine its position. Transformation matrices are an effective method used for the mathematical modeling of robot arms. In this thesis a hybrid mathematical model was used that uses transformation matrices to propose the kinematics of the AUV, this model has the peculiarity of allowing the aggregation of elements to the initial model continuing with the same formulation, resulting in a great utility for cases in which the AUV performs missions in which objects are manipulated and due to this incorporates an arm robot.También agradezco al ministerio de educación pues gracias a los recursos destinados al proyecto DIVISAMOS todo este proyecto fue posible.Aguirre Gómez, FA. (2020). Diseño Optimizado, Modelado Dinámico - Cinemático y Fabricación de un AUV, Integrando Herramientas CAE para su Validación [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/144260TESI
    corecore