1,828 research outputs found

    Achieving Maximum Distance Separable Private Information Retrieval Capacity With Linear Codes

    Get PDF
    We propose three private information retrieval (PIR) protocols for distributed storage systems (DSSs) where data is stored using an arbitrary linear code. The first two protocols, named Protocol 1 and Protocol 2, achieve privacy for the scenario with noncolluding nodes. Protocol 1 requires a file size that is exponential in the number of files in the system, while Protocol 2 requires a file size that is independent of the number of files and is hence simpler. We prove that, for certain linear codes, Protocol 1 achieves the maximum distance separable (MDS) PIR capacity, i.e., the maximum PIR rate (the ratio of the amount of retrieved stored data per unit of downloaded data) for a DSS that uses an MDS code to store any given (finite and infinite) number of files, and Protocol 2 achieves the asymptotic MDS-PIR capacity (with infinitely large number of files in the DSS). In particular, we provide a necessary and a sufficient condition for a code to achieve the MDS-PIR capacity with Protocols 1 and 2 and prove that cyclic codes, Reed-Muller (RM) codes, and a class of distance-optimal local reconstruction codes achieve both the finite MDS-PIR capacity (i.e., with any given number of files) and the asymptotic MDS-PIR capacity with Protocols 1 and 2, respectively. Furthermore, we present a third protocol, Protocol 3, for the scenario with multiple colluding nodes, which can be seen as an improvement of a protocol recently introduced by Freij-Hollanti et al.. Similar to the noncolluding case, we provide a necessary and a sufficient condition to achieve the maximum possible PIR rate of Protocol 3. Moreover, we provide a particular class of codes that is suitable for this protocol and show that RM codes achieve the maximum possible PIR rate for the protocol. For all three protocols, we present an algorithm to optimize their PIR rates.Comment: This work is the extension of the work done in arXiv:1612.07084v2. The current version introduces further refinement to the manuscript. Current version will appear in the IEEE Transactions on Information Theor

    Asymmetry Helps: Improved Private Information Retrieval Protocols for Distributed Storage

    Get PDF
    We consider private information retrieval (PIR) for distributed storage systems (DSSs) with noncolluding nodes where data is stored using a non maximum distance separable (MDS) linear code. It was recently shown that if data is stored using a particular class of non-MDS linear codes, the MDS-PIR capacity, i.e., the maximum possible PIR rate for MDS-coded DSSs, can be achieved. For this class of codes, we prove that the PIR capacity is indeed equal to the MDS-PIR capacity, giving the first family of non-MDS codes for which the PIR capacity is known. For other codes, we provide asymmetric PIR protocols that achieve a strictly larger PIR rate compared to existing symmetric PIR protocols.Comment: To be presented at 2018 IEEE Information Theory Workshop (ITW'18). See arXiv:1808.09018 for its extended versio

    Constructions of Batch Codes via Finite Geometry

    Full text link
    A primitive kk-batch code encodes a string xx of length nn into string yy of length NN, such that each multiset of kk symbols from xx has kk mutually disjoint recovering sets from yy. We develop new explicit and random coding constructions of linear primitive batch codes based on finite geometry. In some parameter regimes, our proposed codes have lower redundancy than previously known batch codes.Comment: 7 pages, 1 figure, 1 tabl
    • …
    corecore