27,708 research outputs found

    Universal direct tuner for loop control in industry

    Get PDF
    This paper introduces a direct universal (automatic) tuner for basic loop control in industrial applications. The direct feature refers to the fact that a first-hand model, such as a step response first-order plus dead time approximation, is not required. Instead, a point in the frequency domain and the corresponding slope of the loop frequency response is identified by single test suitable for industrial applications. The proposed method has been shown to overcome pitfalls found in other (automatic) tuning methods and has been validated in a wide range of common and exotic processes in simulation and experimental conditions. The method is very robust to noise, an important feature for real life industrial applications. Comparison is performed with other well-known methods, such as approximate M-constrained integral gain optimization (AMIGO) and Skogestad internal model controller (SIMC), which are indirect methods, i.e., they are based on a first-hand approximation of step response data. The results indicate great similarity between the results, whereas the direct method has the advantage of skipping this intermediate step of identification. The control structure is the most commonly used in industry, i.e., proportional-integral-derivative (PID) type. As the derivative action is often not used in industry due to its difficult choice, in the proposed method, we use a direct relation between the integral and derivative gains. This enables the user to have in the tuning structure the advantages of the derivative action, therefore much improving the potential of good performance in real life control applications

    Robust PI Controller Design Satisfying Sensitivity and Uncertainty Specifications

    Get PDF
    This paper presents a control design method for determining proportional-integral-type controllers satisfying specifications on gain margin, phase margin, and an upper bound on the (complementary) sensitivity for a finite set of plants. The approach can be applied to plants that are stable or unstable, plants given by a model or measured data, and plants of any order, including plants with delays. The algorithm is efficient and fast, and as such can be used in near real-time to determine controller parameters (for online modification of the plant model including its uncertainty and/or the specifications). The method gives an optimal controller for a practical definition of optimality. Furthermore, it enables the graphical portrayal of design tradeoffs in a single plot, highlighting the effects of the gain margin, complementary sensitivity bound, low frequency sensitivity and high frequency sensor noise amplification

    Robust PI Controller Design Satisfying Gain and Phase Margin Constraints

    Get PDF
    This paper presents a control design algorithm for determining PI-type controllers satisfying specifications on gain margin, phase margin, and an upper bound on the (complementary) sensitivity for a finite set of plants. Important properties of the algorithm are: (i) it can be applied to plants of any order including plants with delay, unstable plants, and plants given by measured data, (ii) it is efficient and fast, and as such can be used in near real-time to determine controller parameters (for on-line modification of the plant model including its uncertainty and/or the specifications), (iii) it can be used to identify the optimal controller for a practical definition of optimality, and (iv) it enables graphical portrayal of design tradeoffs in a single plot (highlighting tradeoffs among the gain margin, complementary sensitivity bound, low frequency sensitivity and high frequency sensor noise amplification)

    Optimal greenhouse cultivation control: survey and perspectives

    Get PDF
    Abstract: A survey is presented of the literature on greenhouse climate control, positioning the various solutions and paradigms in the framework of optimal control. A separation of timescales allows the separation of the economic optimal control problem of greenhouse cultivation into an off-line problem at the tactical level, and an on-line problem at the operational level. This paradigm is used to classify the literature into three categories: focus on operational control, focus on the tactical level, and truly integrated control. Integrated optimal control warrants the best economical result, and provides a systematic way to design control systems for the innovative greenhouses of the future. Research issues and perspectives are listed as well

    Design of PID Controllers Satisfying Gain Margin and Sensitivity Constraints on a Set of Plants

    Get PDF
    This paper presents a method for the design of PID-type controllers, including those augmented by a filter on the D element, satisfying a required gain margin and an upper bound on the (complementary) sensitivity for a finite set of plants. Important properties of the method are: (i) it can be applied to plants of any order including non-minimum phase plants, plants with delay, plants characterized by quasi-polynomials, unstable plants and plants described by measured data, (ii) the sensors associated with the PI terms and the D term can be different (i.e., they can have different transfer function models), (iii) the algorithm relies on explicit equations that can be solved efficiently, (iv) the algorithm can be used in near real-time to determine a controller for on-line modification of a plant accounting for its uncertainty and closed-loop specifications, (v) a single plot can be generated that graphically highlights tradeoffs among the gain margin, (complementary) sensitivity bound, low-frequency sensitivity and high-frequency sensor noise amplification, and (vi) the optimal controller for a practical definition of optimality can readily be identified

    Attosecond control of electrons emitted from a nanoscale metal tip

    Full text link
    Attosecond science is based on steering of electrons with the electric field of well-controlled femtosecond laser pulses. It has led to, for example, the generation of XUV light pulses with a duration in the sub-100-attosecond regime, to the measurement of intra-molecular dynamics by diffraction of an electron taken from the molecule under scrutiny, and to novel ultrafast electron holography. All these effects have been observed with atoms or molecules in the gas phase. Although predicted to occur, a strong light-phase sensitivity of electrons liberated by few-cycle laser pulses from solids has hitherto been elusive. Here we show a carrier-envelope (C-E) phase-dependent current modulation of up to 100% recorded in spectra of electrons laser-emitted from a nanometric tungsten tip. Controlled by the C-E phase, electrons originate from either one or two sub-500as long instances within the 6-fs laser pulse, leading to the presence or absence of spectral interference. We also show that coherent elastic re-scattering of liberated electrons takes place at the metal surface. Due to field enhancement at the tip, a simple laser oscillator suffices to reach the required peak electric field strengths, allowing attosecond science experiments to be performed at the 100-Megahertz repetition rate level and rendering complex amplified laser systems dispensable. Practically, this work represents a simple, exquisitely sensitive C-E phase sensor device, which can be shrunk in volume down to ~ 1cm3. The results indicate that the above-mentioned novel attosecond science techniques developed with and for atoms and molecules can also be employed with solids. In particular, we foresee sub-femtosecond (sub-) nanometre probing of (collective) electron dynamics, such as plasmon polaritons, in solid-state systems ranging in size from mesoscopic solids via clusters to single protruding atoms.Comment: Final manuscript version submitted to Natur

    A human factors methodology for real-time support applications

    Get PDF
    A general approach to the human factors (HF) analysis of new or existing projects at NASA/Goddard is delineated. Because the methodology evolved from HF evaluations of the Mission Planning Terminal (MPT) and the Earth Radiation Budget Satellite Mission Operations Room (ERBS MOR), it is directed specifically to the HF analysis of real-time support applications. Major topics included for discussion are the process of establishing a working relationship between the Human Factors Group (HFG) and the project, orientation of HF analysts to the project, human factors analysis and review, and coordination with major cycles of system development. Sub-topics include specific areas for analysis and appropriate HF tools. Management support functions are outlined. References provide a guide to sources of further information
    corecore