2,704 research outputs found

    Extended Object Tracking: Introduction, Overview and Applications

    Full text link
    This article provides an elaborate overview of current research in extended object tracking. We provide a clear definition of the extended object tracking problem and discuss its delimitation to other types of object tracking. Next, different aspects of extended object modelling are extensively discussed. Subsequently, we give a tutorial introduction to two basic and well used extended object tracking approaches - the random matrix approach and the Kalman filter-based approach for star-convex shapes. The next part treats the tracking of multiple extended objects and elaborates how the large number of feasible association hypotheses can be tackled using both Random Finite Set (RFS) and Non-RFS multi-object trackers. The article concludes with a summary of current applications, where four example applications involving camera, X-band radar, light detection and ranging (lidar), red-green-blue-depth (RGB-D) sensors are highlighted.Comment: 30 pages, 19 figure

    Multisensor Poisson Multi-Bernoulli Filter for Joint Target-Sensor State Tracking

    Full text link
    In a typical multitarget tracking (MTT) scenario, the sensor state is either assumed known, or tracking is performed in the sensor's (relative) coordinate frame. This assumption does not hold when the sensor, e.g., an automotive radar, is mounted on a vehicle, and the target state should be represented in a global (absolute) coordinate frame. Then it is important to consider the uncertain location of the vehicle on which the sensor is mounted for MTT. In this paper, we present a multisensor low complexity Poisson multi-Bernoulli MTT filter, which jointly tracks the uncertain vehicle state and target states. Measurements collected by different sensors mounted on multiple vehicles with varying location uncertainty are incorporated sequentially based on the arrival of new sensor measurements. In doing so, targets observed from a sensor mounted on a well-localized vehicle reduce the state uncertainty of other poorly localized vehicles, provided that a common non-empty subset of targets is observed. A low complexity filter is obtained by approximations of the joint sensor-feature state density minimizing the Kullback-Leibler divergence (KLD). Results from synthetic as well as experimental measurement data, collected in a vehicle driving scenario, demonstrate the performance benefits of joint vehicle-target state tracking.Comment: 13 pages, 7 figure

    Enhanced particle PHD filtering for multiple human tracking

    Get PDF
    PhD ThesisVideo-based single human tracking has found wide application but multiple human tracking is more challenging and enhanced processing techniques are required to estimate the positions and number of targets in each frame. In this thesis, the particle probability hypothesis density (PHD) lter is therefore the focus due to its ability to estimate both localization and cardinality information related to multiple human targets. To improve the tracking performance of the particle PHD lter, a number of enhancements are proposed. The Student's-t distribution is employed within the state and measurement models of the PHD lter to replace the Gaussian distribution because of its heavier tails, and thereby better predict particles with larger amplitudes. Moreover, the variational Bayesian approach is utilized to estimate the relationship between the measurement noise covariance matrix and the state model, and a joint multi-dimensioned Student's-t distribution is exploited. In order to obtain more observable measurements, a backward retrodiction step is employed to increase the measurement set, building upon the concept of a smoothing algorithm. To make further improvement, an adaptive step is used to combine the forward ltering and backward retrodiction ltering operations through the similarities of measurements achieved over discrete time. As such, the errors in the delayed measurements generated by false alarms and environment noise are avoided. In the nal work, information describing human behaviour is employed iv Abstract v to aid particle sampling in the prediction step of the particle PHD lter, which is captured in a social force model. A novel social force model is proposed based on the exponential function. Furthermore, a Markov Chain Monte Carlo (MCMC) step is utilized to resample the predicted particles, and the acceptance ratio is calculated by the results from the social force model to achieve more robust prediction. Then, a one class support vector machine (OCSVM) is applied in the measurement model of the PHD lter, trained on human features, to mitigate noise from the environment and to achieve better tracking performance. The proposed improvements of the particle PHD lters are evaluated with benchmark datasets such as the CAVIAR, PETS2009 and TUD datasets and assessed with quantitative and global evaluation measures, and are compared with state-of-the-art techniques to con rm the improvement of multiple human tracking performance

    Poisson multi-Bernoulli conjugate prior for multiple extended object filtering

    Full text link
    This paper presents a Poisson multi-Bernoulli mixture (PMBM) conjugate prior for multiple extended object filtering. A Poisson point process is used to describe the existence of yet undetected targets, while a multi-Bernoulli mixture describes the distribution of the targets that have been detected. The prediction and update equations are presented for the standard transition density and measurement likelihood. Both the prediction and the update preserve the PMBM form of the density, and in this sense the PMBM density is a conjugate prior. However, the unknown data associations lead to an intractably large number of terms in the PMBM density, and approximations are necessary for tractability. A gamma Gaussian inverse Wishart implementation is presented, along with methods to handle the data association problem. A simulation study shows that the extended target PMBM filter performs well in comparison to the extended target d-GLMB and LMB filters. An experiment with Lidar data illustrates the benefit of tracking both detected and undetected targets

    Probability hypothesis density filter with adaptive parameter estimation for tracking multiple maneuvering targets

    Get PDF
    AbstractThe probability hypothesis density (PHD) filter has been recognized as a promising technique for tracking an unknown number of targets. The performance of the PHD filter, however, is sensitive to the available knowledge on model parameters such as the measurement noise variance and those associated with the changes in the maneuvering target trajectories. If these parameters are unknown in advance, the tracking performance may degrade greatly. To address this aspect, this paper proposes to incorporate the adaptive parameter estimation (APE) method in the PHD filter so that the model parameters, which may be static and/or time-varying, can be estimated jointly with target states. The resulting APE-PHD algorithm is implemented using the particle filter (PF), which leads to the PF-APE-PHD filter. Simulations show that the newly proposed algorithm can correctly identify the unknown measurement noise variances, and it is capable of tracking multiple maneuvering targets with abrupt changing parameters in a more robust manner, compared to the multi-model approaches
    corecore