3 research outputs found

    Online unicasting and multicasting in software-defined networks

    Get PDF
    Software-Defined Networking (SDN) has emerged as the paradigm of the next-generation networking through separating the control plane from the data plane. In a software-defined network, the forwarding table at each switch node usually is implemented by expensive and power-hungry Ternary Content Addressable Memory (TCAM) that only has limited numbers of entries. In addition, the bandwidth capacity at each link is limited as well. Provisioning quality services to users by admitting their requests subject to such critical network resource constraints is a fundamental problem, and very little attention has been paid. In this paper, we study online unicasting and multicasting in SDNs with an objective of maximizing the network throughput under network resource constraints, for which we first propose a novel cost model to accurately capture the usages of network resources at switch nodes and links. We then devise two online algorithms with competitive ratios O(log n) and O(Kϵlog n) for online unicasting and multicasting, respectively, where n is the network size, K is the maximum number of destinations in any multicast request, and ϵ is a constant with 0 < ϵ ≤ 1. We finally evaluate the proposed algorithms empirically through simulations. The simulation results demonstrate that the proposed algorithms are very promising

    Efficient Resource Allocation for Throughput Maximization in Next-Generation Networks

    Get PDF
    Software-Defined Networking (SDN) and Network Function Virtualization (NFV) have emerged as the foundation of the next-generation network architecture by introducing great flexibility and network automation capabilities, including automatic response to faults and load changes and programmatic provision of network resources and connections. It has been envisioned that the SDN- and NFV-based next-generation network architecture will play a critical role in providing network services to users, where the desired network services, including data transfer and policy enforcement, are fulfilled by allocating network resources using virtualization technologies. However, the disparity between ever-growing user demands and scarce network resources makes resource allocation exceptionally central to the performance of a network service, because only by effectively allocating these scarce resources can a network service provider satisfy users and maximize the gain from running the service. In this thesis, we study efficient resource allocation for network throughput maximization in next-generation networks, while meeting user resource demands and Quality of Service (QoS) requirements, subject to network resource capacities. This however poses great challenges, namely, (1) how to maximize network throughput, considering that both SDN-enabled switches and links are capacitated, (2) how to maximize the network throughput while taking into account network function and QoS requirements of users, (3) how to dynamically scale and readjust resource allocation for user requests, and (4) how to provision a network service that can satisfy user reliability requirements. To address these challenges, we provide a thorough study of network throughput maximization problems in the context of the next-generation network architecture, by formulating the problems as optimizations problems and developing novel optimization frameworks and algorithms for the problems. Specifically, this thesis makes the following contributions. Firstly, we consider dynamic user request admissions where user requests arrive one by one and the knowledge of future request arrivals is not given as a priori. We develop a novel cost model that accurately captures the usage costs of network resources and propose online algorithms with provable performance guarantees. Secondly, we study the problem of realizing user requests with network function requirements, with the objective of maximizing network throughput, while meeting user QoS requirements, subject to resource capacity constraints. For this problem, we develop two algorithms that strive for the trade-off between the accuracy/quality of a solution and the running time of obtaining the solution. Thirdly, we investigate maximization of network throughput by dynamically scaling network resources while minimizing the overall operational cost of a network. We propose a unified framework for two types of resource scaling {--} vertical scaling and horizontal scaling. Through non-trivial reductions of the problem of concern into several classic problems, we propose an algorithm that has been empirically demonstrated to deliver near-optimal solutions. Fourthly, we deal with the problem of reliability-aware provisioning of network resources for users, with the aim of maximizing network throughput. We devise an approximation algorithm with a logarithmic approximation ratio for the general case of this problem. We also develop constant-factor approximation and exact algorithm for two special cases of the problem, respectively. The formulated problem is a generalization of several classic optimization problems. Finally, in addition to extensive theoretical analyses, we also evaluate the performance of proposed algorithms empirically through experimental simulations based on real and synthetic datasets. Experimental results show that the proposed algorithms significantly outperform existing algorithms
    corecore