1,603 research outputs found

    Wearable Capacitive-based Wrist-worn Gesture Sensing System

    Get PDF
    Gesture control plays an increasingly significant role in modern human-machine interactions. This paper presents an innovative method of gesture recognition using flexible capacitive pressure sensor attached on user’s wrist towards computer vision and connecting senses on fingers. The method is based on the pressure variations around the wrist when the gesture changes. Flexible and ultrathin capacitive pressure sensors are deployed to capture the pressure variations. The embedding of sensors on a flexible substrate and obtain the relevant capacitance require a reliable approach based on a microcontroller to measure a small change of capacitive sensor. This paper is addressing these challenges, collect and process the measured capacitance values through a developed programming on LabVIEW to reconstruct the gesture on computer. Compared to the conventional approaches, the wrist-worn sensing method offerings a low-cost, lightweight and wearable prototype on the user’s body. The experimental result shows that the potentiality and benefits of this approach and confirms that accuracy and number of recognizable gestures can be improved by increasing number of sensor

    SENSING MECHANISM AND APPLICATION OF MECHANICAL STRAIN SENSOR: A MINI-REVIEW

    Get PDF
    This study reviews the potential of flexible strain sensors based on nanomaterials such as carbon nanotubes (CNTs), graphene, and metal nanowires (NWs). These nanomaterials have excellent flexibility, conductivity, and mechanical properties, which enable them to be integrated into clothing or attached to the skin for the real-time monitoring of various activities. However, the main challenge is balancing high stretchability and sensitivity. This paper explains the basic concept of strain sensors that can convert mechanical deformation into electrical signals. Moreover, this paper focuses on simple, flexible, and stretchable resistive and capacitive sensors. It also discusses the important factors in choosing materials and fabrication methods, emphasizing the crucial role of suitable polymers in high-performance strain sensing. This study reviews the fabrication processes, mechanisms, performance, and applications of stretchable strain sensors in detail. It analyzes key aspects, such as sensitivity, stretchability, linearity, response time, and durability. This review provides useful insights into the current status and prospects of stretchable strain sensors in wearable technology and human–machine interfaces

    Materials, Mechanics, and Patterning Techniques for Elastomer-Based Stretchable Conductors

    Get PDF
    Stretchable electronics represent a new generation of electronics that utilize soft, deformable elastomers as the substrate or matrix instead of the traditional rigid printed circuit boards. As the most essential component of stretchable electronics, the conductors should meet the requirements for both high conductivity and the capability to maintain conductive under large deformations such as bending, twisting, stretching, and compressing. This review summarizes recent progresses in various aspects of this fascinating and challenging area, including materials for supporting elastomers and electrical conductors, unique designs and stretching mechanics, and the subtractive and additive patterning techniques. The applications are discussed along with functional devices based on these conductors. Finally, the review is concluded with the current limitations, challenges, and future directions of stretchable conductors

    High-resolution 3D direct-write prototyping for healthcare applications

    Get PDF
    The healthcare sector has much to benefit from the vast array of novelties erupting from the manufacturing world. 3D printing (additive manufacturing) is amongst the most promising recent inventions with much research concentrated around the various approaches of 3D printing and applying this effectively in the health sector. Amongst these methods, the direct-write assembly approach is a promising candidate for rapid prototyping and manufacturing of miniaturised medical devices/sensors and in particular, miniaturised flexible capacitive pressure sensors. Microstructuring the dielectric medium of capacitive pressure sensors enhances the sensitivity of the capacitive pressure sensor. The structuring has been predominantly achieved with photolithography and similar subtractive approaches. In this project high-resolution 3D direct write printing was used to fabricate structured dielectric mediums for capacitive pressure sensors. This involved the development and rheological characterisation of printability-tuned water soluble polyvinyl pyrrolidone (PVP) based inks (10%-30% polymer content) for stable high-resolution 3D printing. These inks were used to print water soluble micromoulds that were filled and cured with otherwise difficult to structure low G’ materials like PDMS. Our approach essentially decouples ink synthesis from printability at the micrometre scale. The developed micro moulding approach was employed for printing pyramidal micro moulds, that were used as templates for fabricating pyramid structured dielectric mediums for capacitive pressure sensing. The power of the approach was used to alter the microstructures and reap enhanced pressure sensing characteristics for effective miniaturised capacitive pressure sensors. A pressure sensing ring – that could be worn by doctors and surgeons – was prototyped with our approach and employed successfully to monitor in real-time the radial pulse signal of a 29 year old male volunteer. The print resolution of the inks was enhanced by formulating and rheologically characterising a PVP/PVDF polymer blend ink that would wet the printing nozzle less due to the hydrophobicity of the PVDF

    Dielectric Elastomer Sensors

    Get PDF
    Dielectric elastomers (DEs) represent a class of electroactive polymers (EAPs) that exhibit a significant electromechanical effect, which has made them very attractive over the last several decades for use as soft actuators, sensors and generators. Based on the principle of a plane‐parallel capacitor, dielectric elastomer sensors consist of a flexible and stretchable dielectric polymer sandwiched between two compliant electrodes. With the development of elastic polymers and stretchable conductors, flexible and sensitive dielectric elastomer tactile sensors, similar to human skin, have been used for measuring mechanical deformations, such as pressure, strain, shear and torsion. For high sensitivity and fast response, air gaps and microstructural dielectric layers are employed in pressure sensors or multiaxial force sensors. Multimodal dielectric elastomer sensors have been reported that can detect mechanical deformation but can also sense temperature, humidity, as well as chemical and biological stimulation in human‐activity monitoring and personal healthcare. Hence, dielectric elastomer sensors have great potential for applications in soft robotics, wearable devices, medical diagnostic and structural health monitoring, because of their large deformation, low cost, ease of fabrication and ease of integration into monitored structures

    Highly Sensitive Soft Foam Sensors for Wearable Applications

    Get PDF
    Due to people’s increasing desire for body health monitoring, the needs of knowing humans’ body parameters and transferring them to analyzable and understandable signals become increasingly attractive and significant. The present body-sign measurement devices are still bulky medical devices used in settings such as clinics or hospitals, which are accurate, but expensive and cannot achieve the personalization of usage targets and the monitoring of real-time body parameters. Many commercial wearable devices can provide some of the body indexes, such as the smartwatch providing the pulse/heartbeat information, but cannot give accurate and reliable data, and the data could be influenced by the user’s movement and the loose wearing habit, either. In this way, developing next-generation wearable devices combining good wearable experience and accuracy is gathering increasing attention. The aim of this study is to develop a high-performance pressure/strain sensor with the requirements of comfortable to wear, and having great electromechanical behaviour to convert the physiological signal to an analyzable signal

    Recent Advances in Printed Capacitive Sensors

    Get PDF
    In this review paper, we summarize the latest advances in the field of capacitive sensors fabricated by printing techniques. We first explain the main technologies used in printed electronics, pointing out their features and uses, and discuss their advantages and drawbacks. Then, we review the main types of capacitive sensors manufactured with different materials and techniques from physical to chemical detection, detailing the main substrates and additives utilized, as well as the measured ranges. The paper concludes with a short notice on status and perspectives in the field.H2020-MSCA-IF-2017-794885-SELFSEN

    Research progress of flexible wearable stress sensor

    Get PDF
    Flexible wearable pressure sensors are widely used in health diagnosis, sports monitoring, rehabilitation medicine, entertainment, and other fields due to some factors such as the stretch ability, bendability, light weight, portability, and excellent electrical properties. In recent years, significant progress has been made in flexible pressure sensors, and a variety of flexible pressure sensors that able to measure health status have been applied to the pulse wave, movement, respiration, and electrocardiogram (ECG) detection. However, there are still many problems to be solved in the development of flexible pressure sensors. This article summarizes the development of flexible pressure sensors in recent years, from the working principle to the structural design of the flexible pressure sensors; designs to build a high-performance flexible pressure sensors; discusses the problems existing in current flexible pressure sensors and envisions the development trend of flexible pressure sensors in the future. Flexible pressure sensors with excellent flexibility, good biocompatibility, rapid response, high sensitivity, and multifunctional integration have shown a broad application prospects

    Piezoresistive tactile sensor discriminating multidirectional forces

    Get PDF
    Flexible tactile sensors capable of detecting the magnitude and direction of the applied force together are of great interest for application in human-interactive robots, prosthetics, and bionic arms/feet. Human skin contains excellent tactile sensing elements, mechanoreceptors, which detect their assigned tactile stimuli and transduce them into electrical signals. The transduced signals are transmitted through separated nerve fibers to the central nerve system without complicated signal processing. Inspired by the function and organization of human skin, we present a piezoresistive type tactile sensor capable of discriminating the direction and magnitude of stimulations without further signal processing. Our tactile sensor is based on a flexible core and four sidewall structures of elastomer, where highly sensitive interlocking piezoresistive type sensing elements are embedded. We demonstrate the discriminating normal pressure and shear force simultaneously without interference between the applied forces. The developed sensor can detect down to 128 Pa in normal pressure and 0.08 N in shear force, respectively. The developed sensor can be applied in the prosthetic arms requiring the restoration of tactile sensation to discriminate the feeling of normal and shear force like human skin.open0
    corecore