79 research outputs found

    Polymer based microfabrication and its applications in optical MEMS and bioMEMS

    Get PDF
    Due to its ease of fabrication, low cost and great variety of functionalities, polymer has become an important material in microfabrication. MEMS devices with polymer as the structure material have found applications in various fields, especially in BioMEMS and optical MEMS. In this dissertation, three polymer based microfabricated devices/components have been developed and tested. Various polymer based fabrication techniques, such as high aspect ratio SU-8 photolithography, three dimensional polydimethylsiloxane (PDMS) soft lithography, multi-layer soft lithography and PDMS double casting technique have been developed/studied and employed in the device fabrication process. The main contribution of this dissertation includes: (1) Developed two novel methods for the fabrication of out-of-plane microlens. The PDMS and UV curable polymer (NOA73) replication technique made possible the fast replication of out-of-plane microlens and broaden the lens material selection. The in-situ pneumatical microlens fabrication technique, on the other hand, provides feasible method to integrate out-of-plane microlens into microfluidic chips requiring minimal design footprint and fabrication complexity. (2) Design, fabrication and test of a microchip flow cytometer with 3-D hydrofocusing chamber and integrated out-of-plane microlens as on-chip optical detection component. The developed micro flow cytometer offers 3-D hydrofocusing like conventional cytometer cuvette, and has on-chip microlens for optical signal collection to improve the detection efficiency. With the latest design improvement, the hydrofocusing chamber can focus the sample stream down to less than 10 m in diameter in both vertical and horizontal directions. (3) Development of a PDMS microchip based platform for multiplex immunoassay applications. Integrated micro valves were employed for manipulation of fluidic reagents in the microchannel network. PDMS surface was used as the solid phase substrate for immuno-reactions. Preliminary results showed that, even with low cost polyclonal goat anti-mouse IgG as the reporter antibody, the detection limit of goat mouse IgG can reach as low as 5 ng/mL (about 33 pM). With the continuous advance in microfabrcation technique and polymer science, polymer based microfabrication and polymer MEMS devices will keep to evolve. In the future, more work needs to be done in this field with great potential and endless innovations

    Design and development of a microfluidic platform for use with colorimetric gold nanoprobe assays

    Get PDF
    Due to the importance and wide applications of the DNA analysis, there is a need to make genetic analysis more available and more affordable. As such, the aim of this PhD thesis is to optimize a colorimetric DNA biosensor based on gold nanoprobes developed in CEMOP by reducing its price and the needed volume of solution without compromising the device sensitivity and reliability, towards the point of care use. Firstly, the price of the biosensor was decreased by replacing the silicon photodetector by a low cost, solution processed TiO2 photodetector. To further reduce the photodetector price, a novel fabrication method was developed: a cost-effective inkjet printing technology that enabled to increase TiO2 surface area. Secondly, the DNA biosensor was optimized by means of microfluidics that offer advantages of miniaturization, much lower sample/reagents consumption, enhanced system performance and functionality by integrating different components. In the developed microfluidic platform, the optical path length was extended by detecting along the channel and the light was transmitted by optical fibres enabling to guide the light very close to the analysed solution. Microfluidic chip of high aspect ratio (~13), smooth and nearly vertical sidewalls was fabricated in PDMS using a SU-8 mould for patterning. The platform coupled to the gold nanoprobe assay enabled detection of Mycobacterium tuberculosis using 3 8l on DNA solution, i.e. 20 times less than in the previous state-of-the-art. Subsequently, the bio-microfluidic platform was optimized in terms of cost, electrical signal processing and sensitivity to colour variation, yielding 160% improvement of colorimetric AuNPs analysis. Planar microlenses were incorporated to converge light into the sample and then to the output fibre core increasing 6 times the signal-to-losses ratio. The optimized platform enabled detection of single nucleotide polymorphism related with obesity risk (FTO) using target DNA concentration below the limit of detection of the conventionally used microplate reader (i.e. 15 ng/μl) with 10 times lower solution volume (3 μl). The combination of the unique optical properties of gold nanoprobes with microfluidic platform resulted in sensitive and accurate sensor for single nucleotide polymorphism detection operating using small volumes of solutions and without the need for substrate functionalization or sophisticated instrumentation. Simultaneously, to enable on chip reagents mixing, a PDMS micromixer was developed and optimized for the highest efficiency, low pressure drop and short mixing length. The optimized device shows 80% of mixing efficiency at Re = 0.1 in 2.5 mm long mixer with the pressure drop of 6 Pa, satisfying requirements for the application in the microfluidic platform for DNA analysis.Portuguese Science Foundation - (SFRH/BD/44258/2008), “SMART-EC” projec

    Perspective and Potential of Smart Optical Materials

    Get PDF
    The increasing requirements of hyperspectral imaging optics, electro/photo-chromic materials, negative refractive index metamaterial optics, and miniaturized optical components from microscale to quantum-scale optics have all contributed to new features and advancements in optics technology. Development of multifunctional capable optics has pushed the boundaries of optics into new fields that require new disciplines and materials to maximize the potential benefits. The purpose of this study is to understand and show the fundamental materials and fabrication technology for field-controlled spectrally active optics (referred to as smart optics) that are essential for future industrial, scientific, military, and space applications, such as membrane optics, light detection and ranging (LIDAR) filters, windows for sensors and probes, telescopes, spectroscopes, cameras, light valves, light switches, and flat-panel displays. The proposed smart optics are based on the Stark and Zeeman effects in materials tailored with quantum dot arrays and thin films made from readily polarizable materials via ferroelectricity or ferromagnetism. Bound excitonic states of organic crystals are also capable of optical adaptability, tunability, and reconfigurability. To show the benefits of smart optics, this paper reviews spectral characteristics of smart optical materials and device technology. Experiments testing the quantum-confined Stark effect, arising from rare earth element doping effects in semiconductors, and applied electric field effects on spectral and refractive index are discussed. Other bulk and dopant materials were also discovered to have the same aspect of shifts in spectrum and refractive index. Other efforts focus on materials for creating field-controlled spectrally smart active optics (FCSAO) on a selected spectral range. Surface plasmon polariton transmission of light through apertures is also discussed, along with potential applications. New breakthroughs in micro scale multiple zone plate optics as a micro convex lens are reviewed, along with the newly discovered pseudo-focal point not predicted with conventional optics modeling. Micron-sized solid state beam scanner chips for laser waveguides are reviewed as well

    Three-dimensional femtosecond laser processing for lab-on-a-chip applications

    Get PDF
    AbstractThe extremely high peak intensity associated with ultrashort pulse width of femtosecond laser allows us to induce nonlinear interaction such as multiphoton absorption and tunneling ionization with materials that are transparent to the laser wavelength. More importantly, focusing the femtosecond laser beam inside the transparent materials confines the nonlinear interaction only within the focal volume, enabling three-dimensional (3D) micro- and nanofabrication. This 3D capability offers three different schemes, which involve undeformative, subtractive, and additive processing. The undeformative processing preforms internal refractive index modification to construct optical microcomponents including optical waveguides. Subtractive processing can realize the direct fabrication of 3D microfluidics, micromechanics, microelectronics, and photonic microcomponents in glass. Additive processing represented by two-photon polymerization enables the fabrication of 3D polymer micro- and nanostructures for photonic and microfluidic devices. These different schemes can be integrated to realize more functional microdevices including lab-on-a-chip devices, which are miniaturized laboratories that can perform reaction, detection, analysis, separation, and synthesis of biochemical materials with high efficiency, high speed, high sensitivity, low reagent consumption, and low waste production. This review paper describes the principles and applications of femtosecond laser 3D micro- and nanofabrication for lab-on-a-chip applications. A hybrid technique that promises to enhance functionality of lab-on-a-chip devices is also introduced

    Development and validation of gold nanoprobes for human SNP detection towards commercial application

    Get PDF
    Conventional molecular techniques for detection and characterization of relevant nucleic acid (i.e. DNA) sequences are, nowadays, cumbersome, expensive and with reduced portability. The main objective of this dissertation consisted in the optimization and validation of a fast and low-cost colorimetric nanodiagnostic methodology for the detection of single nucleotide polymorphisms (SNPs). This was done considering SNPs associated to obesity of commercial interest for STAB VIDA, and subsequent evaluation of other clinically relevant targets. Also, integration of this methodology into a microfluidic platform envisaging portability and application on points-of-care (POC) was achieved. To warrant success in pursuing these objectives, the experimental work was divided in four sections: i) genetic association of SNPs to obesity in the Portuguese population; ii) optimization and validation of the non-cross-linking approach for complete genotype characterization of these SNPs; iii) incorporation into a microfluidic platform; and iv) translation to other relevant commercial targets. FTO dbSNP rs#:9939609 carriers had higher body mass index (BMI), total body fat mass, waist perimeter and 2.5 times higher risk to obesity. AuNPs functionalized with thiolated oligonucleotides (Au-nanoprobes) were used via the non-cross-linking to validate a diagnostics approach against the gold standard technique - Sanger Sequencing - with high levels of sensitivity (87.50%) and specificity (91.67%). A proof-of-concept POC microfluidic device was assembled towards incorporation of the molecular detection strategy. In conclusion a successful framework was developed and validated for the detection of SNPs with commercial interest for STAB VIDA, towards future translation into a POC device

    Roadmap for optofluidics

    Get PDF
    Optofluidics, nominally the research area where optics and fluidics merge, is a relatively new research field and it is only in the last decade that there has been a large increase in the number of optofluidic. applications, as well as in the number of research groups, devoted to the topic. Nowadays optofluidics applications include, without being limited to, lab-on-a-chip devices, fluid-based and controlled lenses, optical sensors for fluids and for suspended particles, biosensors, imaging tools, etc. The long list of potential optofluidics applications, which have been recently demonstrated, suggests that optofluidic technologies will become more and more common in everyday life in the future, causing a significant impact on many aspects of our society. A characteristic of this research field, deriving from both its interdisciplinary origin and applications, is that in order to develop suitable solutions a. combination of a deep knowledge in different fields, ranging from materials science to photonics, from microfluidics to molecular biology and biophysics,. is often required. As a direct consequence, also being able to understand the long-term evolution of optofluidics research is not. easy. In this article, we report several expert contributions on different topics. so as to provide guidance for young scientists. At the same time, we hope that this document will also prove useful for funding institutions and stakeholders. to better understand the perspectives and opportunities offered by this research field

    Development of an integrated microspectrometer using arrayed waveguide grating (AWG)

    Get PDF
    With non-invasive properties and high sensitivities, portable optical biosensors are extremely desirable for point-of-care (POC) applications. Lab-on-a-chip technology such as microfluidics has been treated as an ideal approach to integrate complex sample processing and analysis units with optical detection elements. Spectroscopic sensing (such as fluorescence, Raman and absorption spectroscopy) remains the most highly developed, widely applied, optical technique. However, conventional spectroscopic sensing systems still rely on bulky and expensive dispersive components such as spectrophotometers in a well established laboratory. The work in this thesis is to develop an integrated dispersive component in combination with a microfluidic chip, providing a portable and inexpensive platform for on-chip spectroscopic sensing. In this study, an arrayed waveguide grating (AWG) design developed for telecommunication is re-engineered and utilized to realise a compact, dispersive optical component operating in the visible spectral region. The AWG devices operating in the visible region (λ_c=680 nm) are designed and fabricated with flame hydrolysis deposited (FHD) silica waveguide material. The micro-spectrometer in this proof of concept study has a small (1 cm x 1 cm) footprint and 8 output channels centred on different wavelengths. A series of fabrication issues and challenges are investigated and discussed for the specific AWG device. Subsequently, a sample cuvette is formed by using lithographic technique and dry etching process. Following this, a PDMS chip with microfluidic channels is bonded with the AWG device, leading to an integrated AWG-microfluidic platform. To the best of the author’s knowledge, this is the first work to integrate a visible AWG device and a microfluidic chip towards spectroscopic sensing. The monolithic integrated AWG microspectrometer–microfluidic platform is demonstrated for fluorescence spectroscopic analysis. Signals from the output channels detected on a camera chip can be used to re-create the complete fluorescence spectrum of an analyte. By making fluorescence measurements of (i) mixed quantum dot solutions, (ii) an organic fluorophore (Cy5) and (iii) the propidium iodide (PI)-DNA assay, the results obtained illustrate the unique advantages of the AWG platform for simultaneous, quantitative multiplex detection and its capability to detect small spectroscopic shifts. Although the current system is designed for fluorescence spectroscopic analysis, in principle, it can be implemented for other types of analysis, such as Raman spectroscopy. Fabricated using established semiconductor industry methods, this miniturised platform holds great potential to create a handheld, low cost biosensor with versatile detection capability. Also, the AWG device design is modified with focusing properties that enable localised spectroscopic measurements. Micro-beads based, multiplexed fluorescence detection is performed with the AWG + CCD system and the results have demonstrated capabilities of using the adapted AWG device for localised, multiplexed fluorescence detections, opening up potential applications in the field of cell sorting and single cell analysis. Furthermore, the AWG-microfluidic device is investigated for absorption spectroscopy measurement. As a test system, the pH dependence of the absorption spectra of bromophenol blue is measured to illustrate how an AWG device could be used as a colorimetric pH sensor. Overall, it is believed that the AWG technology holds great potential to realise a compact, integrated spectroscopic biosensor for point-of-care applications

    Photonic hydrogel sensors

    Get PDF
    Analyte-sensitive hydrogels that incorporate optical structures have emerged as sensing platforms for point-of-care diagnostics. The optical properties of the hydrogel sensors can be rationally designed and fabricated through self-assembly, microfabrication or laser writing. The advantages of photonic hydrogel sensors over conventional assay formats include label-free, quantitative, reusable, and continuous measurement capability that can be integrated with equipment-free text or image display. This Review explains the operation principles of photonic hydrogel sensors, presents syntheses of stimuli-responsive polymers, and provides an overview of qualitative and quantitative readout technologies. Applications in clinical samples are discussed, and potential future directions are identified

    Photonic Hydrogel Sensors

    Get PDF
    Analyte-sensitive hydrogels that incorporate optical structures have emerged as sensing platforms for point-of-care diagnostics. The optical properties of the hydrogel sensors can be rationally designed and fabricated through self-assembly, microfabrication or laser writing. The advantages of photonic hydrogel sensors over conventional assay formats include label-free, quantitative, reusable, and continuous measurement capability that can be integrated with equipment-free text or image display. This Review explains the operation principles of photonic hydrogel sensors, presents syntheses of stimuli-responsive polymers, and provides an overview of qualitative and quantitative readout technologies. Applications in clinical samples are discussed, and potential future directions are identified

    MEMS Technology for Biomedical Imaging Applications

    Get PDF
    Biomedical imaging is the key technique and process to create informative images of the human body or other organic structures for clinical purposes or medical science. Micro-electro-mechanical systems (MEMS) technology has demonstrated enormous potential in biomedical imaging applications due to its outstanding advantages of, for instance, miniaturization, high speed, higher resolution, and convenience of batch fabrication. There are many advancements and breakthroughs developing in the academic community, and there are a few challenges raised accordingly upon the designs, structures, fabrication, integration, and applications of MEMS for all kinds of biomedical imaging. This Special Issue aims to collate and showcase research papers, short commutations, perspectives, and insightful review articles from esteemed colleagues that demonstrate: (1) original works on the topic of MEMS components or devices based on various kinds of mechanisms for biomedical imaging; and (2) new developments and potentials of applying MEMS technology of any kind in biomedical imaging. The objective of this special session is to provide insightful information regarding the technological advancements for the researchers in the community
    corecore