3,487 research outputs found

    Transforming Graph Representations for Statistical Relational Learning

    Full text link
    Relational data representations have become an increasingly important topic due to the recent proliferation of network datasets (e.g., social, biological, information networks) and a corresponding increase in the application of statistical relational learning (SRL) algorithms to these domains. In this article, we examine a range of representation issues for graph-based relational data. Since the choice of relational data representation for the nodes, links, and features can dramatically affect the capabilities of SRL algorithms, we survey approaches and opportunities for relational representation transformation designed to improve the performance of these algorithms. This leads us to introduce an intuitive taxonomy for data representation transformations in relational domains that incorporates link transformation and node transformation as symmetric representation tasks. In particular, the transformation tasks for both nodes and links include (i) predicting their existence, (ii) predicting their label or type, (iii) estimating their weight or importance, and (iv) systematically constructing their relevant features. We motivate our taxonomy through detailed examples and use it to survey and compare competing approaches for each of these tasks. We also discuss general conditions for transforming links, nodes, and features. Finally, we highlight challenges that remain to be addressed

    Hierarchical Cluster Analysis: A New Type of Ranking Criteria Based on ARWU Ranking Data

    Get PDF
    The advent of big data leads to many applications of Machine Learning techniques. University rankings is one of the applicable domains, which is currently playing a crucial role in the assessment of the universities\u27 performance. Currently, the rankings are usually carried out by some authoritative ranking institutions by means of weighting techniques and the results are conveyed in numerical rankings. Three of the most famous university ranking institutions have been introduced from a technical perspective. However, these institutions have been proven to be subjective in relation to their data selection and weighting method

    Unsupervised Classification of Neolithic Pottery From the Northern Alpine Space Using t-SNE and HDBSCAN

    Get PDF
    Terms of “Neolithic cultures” are still used to describe spatial and temporal differences in pottery styles across central Europe. These terms date back to research periods when absolute dating methods were lacking and typological classification was used to establish chronologies. Those terms are charged with problematic, biasing notions of social configurations: cultural homogeneity, spatial boundedness, and immobility. In this article, we present an alternative approach to pottery classification by using ceramics from dendrochronologically and C14-dated sites of the 40th–38th c. BC located in the northern Alpine Foreland. The newly developed methodology uses a computational unsupervised classification based on profile shape and additional nominal characteristics using t-Distributed Stochastic Neighbour Embedding and Hierarchical Density-Based Spatial Clustering of Applications with Noise for cluster analyses. Its role in our project was to provide a quantitative, algorithm-based approach to classify large datasets of pottery while simultaneously account for a large number of variables. This enabled us to find similarity structures that would escape human cognitive capacities on which typological classification is based on. It formed one pilar of a mixed method research approach combining qualitative and quantitative methods of pottery classification. Our results show that the premises of cultural homogeneity are untenable but can be methodologically overcome by using the proposed classification approaches

    Correlation Clustering

    Get PDF
    Knowledge Discovery in Databases (KDD) is the non-trivial process of identifying valid, novel, potentially useful, and ultimately understandable patterns in data. The core step of the KDD process is the application of a Data Mining algorithm in order to produce a particular enumeration of patterns and relationships in large databases. Clustering is one of the major data mining techniques and aims at grouping the data objects into meaningful classes (clusters) such that the similarity of objects within clusters is maximized, and the similarity of objects from different clusters is minimized. This can serve to group customers with similar interests, or to group genes with related functionalities. Currently, a challenge for clustering-techniques are especially high dimensional feature-spaces. Due to modern facilities of data collection, real data sets usually contain many features. These features are often noisy or exhibit correlations among each other. However, since these effects in different parts of the data set are differently relevant, irrelevant features cannot be discarded in advance. The selection of relevant features must therefore be integrated into the data mining technique. Since about 10 years, specialized clustering approaches have been developed to cope with problems in high dimensional data better than classic clustering approaches. Often, however, the different problems of very different nature are not distinguished from one another. A main objective of this thesis is therefore a systematic classification of the diverse approaches developed in recent years according to their task definition, their basic strategy, and their algorithmic approach. We discern as main categories the search for clusters (i) w.r.t. closeness of objects in axis-parallel subspaces, (ii) w.r.t. common behavior (patterns) of objects in axis-parallel subspaces, and (iii) w.r.t. closeness of objects in arbitrarily oriented subspaces (so called correlation cluster). For the third category, the remaining parts of the thesis describe novel approaches. A first approach is the adaptation of density-based clustering to the problem of correlation clustering. The starting point here is the first density-based approach in this field, the algorithm 4C. Subsequently, enhancements and variations of this approach are discussed allowing for a more robust, more efficient, or more effective behavior or even find hierarchies of correlation clusters and the corresponding subspaces. The density-based approach to correlation clustering, however, is fundamentally unable to solve some issues since an analysis of local neighborhoods is required. This is a problem in high dimensional data. Therefore, a novel method is proposed tackling the correlation clustering problem in a global approach. Finally, a method is proposed to derive models for correlation clusters to allow for an interpretation of the clusters and facilitate more thorough analysis in the corresponding domain science. Finally, possible applications of these models are proposed and discussed.Knowledge Discovery in Databases (KDD) ist der Prozess der automatischen Extraktion von Wissen aus großen Datenmengen, das gültig, bisher unbekannt und potentiell nützlich für eine gegebene Anwendung ist. Der zentrale Schritt des KDD-Prozesses ist das Anwenden von Data Mining-Techniken, um nützliche Beziehungen und Zusammenhänge in einer aufbereiteten Datenmenge aufzudecken. Eine der wichtigsten Techniken des Data Mining ist die Cluster-Analyse (Clustering). Dabei sollen die Objekte einer Datenbank in Gruppen (Cluster) partitioniert werden, so dass Objekte eines Clusters möglichst ähnlich und Objekte verschiedener Cluster möglichst unähnlich zu einander sind. Hier können beispielsweise Gruppen von Kunden identifiziert werden, die ähnliche Interessen haben, oder Gruppen von Genen, die ähnliche Funktionalitäten besitzen. Eine aktuelle Herausforderung für Clustering-Verfahren stellen hochdimensionale Feature-Räume dar. Reale Datensätze beinhalten dank moderner Verfahren zur Datenerhebung häufig sehr viele Merkmale (Features). Teile dieser Merkmale unterliegen oft Rauschen oder Abhängigkeiten und können meist nicht im Vorfeld ausgesiebt werden, da diese Effekte in Teilen der Datenbank jeweils unterschiedlich ausgeprägt sind. Daher muss die Wahl der Features mit dem Data-Mining-Verfahren verknüpft werden. Seit etwa 10 Jahren werden vermehrt spezialisierte Clustering-Verfahren entwickelt, die mit den in hochdimensionalen Feature-Räumen auftretenden Problemen besser umgehen können als klassische Clustering-Verfahren. Hierbei wird aber oftmals nicht zwischen den ihrer Natur nach im Einzelnen sehr unterschiedlichen Problemen unterschieden. Ein Hauptanliegen der Dissertation ist daher eine systematische Einordnung der in den letzten Jahren entwickelten sehr diversen Ansätze nach den Gesichtspunkten ihrer jeweiligen Problemauffassung, ihrer grundlegenden Lösungsstrategie und ihrer algorithmischen Vorgehensweise. Als Hauptkategorien unterscheiden wir hierbei die Suche nach Clustern (1.) hinsichtlich der Nähe von Cluster-Objekten in achsenparallelen Unterräumen, (2.) hinsichtlich gemeinsamer Verhaltensweisen (Mustern) von Cluster-Objekten in achsenparallelen Unterräumen und (3.) hinsichtlich der Nähe von Cluster-Objekten in beliebig orientierten Unterräumen (sogenannte Korrelations-Cluster). Für die dritte Kategorie sollen in den weiteren Teilen der Dissertation innovative Lösungsansätze entwickelt werden. Ein erster Lösungsansatz basiert auf einer Erweiterung des dichte-basierten Clustering auf die Problemstellung des Korrelations-Clustering. Den Ausgangspunkt bildet der erste dichtebasierte Ansatz in diesem Bereich, der Algorithmus 4C. Anschließend werden Erweiterungen und Variationen dieses Ansatzes diskutiert, die robusteres, effizienteres oder effektiveres Verhalten aufweisen oder sogar Hierarchien von Korrelations-Clustern und den entsprechenden Unterräumen finden. Die dichtebasierten Korrelations-Cluster-Verfahren können allerdings einige Probleme grundsätzlich nicht lösen, da sie auf der Analyse lokaler Nachbarschaften beruhen. Dies ist in hochdimensionalen Feature-Räumen problematisch. Daher wird eine weitere Neuentwicklung vorgestellt, die das Korrelations-Cluster-Problem mit einer globalen Methode angeht. Schließlich wird eine Methode vorgestellt, die Cluster-Modelle für Korrelationscluster ableitet, so dass die gefundenen Cluster interpretiert werden können und tiefergehende Untersuchungen in der jeweiligen Fachdisziplin zielgerichtet möglich sind. Mögliche Anwendungen dieser Modelle werden abschließend vorgestellt und untersucht
    corecore