4,076 research outputs found

    Development of augmented reality rehabilitation games integrated with biofeedback for upper limb

    Full text link
    Stroke is one of the leading causes of disability in all over the world. This disability greatly impacts the stroke patients' daily life activities. Thus, rehabilitation exercises are essential for post stroke patients to restore their lost functions gradually for daily life activities. Traditional rehabilitation exercises do not motivate the post stroke patients as they are normally humdrum and required expensive equipments. Therefore, this paper presents the development of low -cost motivating webcam colour based visual tracking augmented reality (AR) system with biofeedback for upper-limb post stroke rehabilitation therapy. Augmented Reality is a novel form of human-computer interface which overlay the computer-generated information on the real world environment rather than replaces it. In the developed AR system, two games; Ping Pong Rehab (PPR) and Balloon Collection Rehab (BCR) are created based on game design principle. PPR game trains shoulder and arm muscles during rehabilitation therapy whilst BCR game trains shoulder, arm and forearm muscles. Both games have been built and integrated with Biograph Infiniti software to monitor the muscles' performance. The integrated system will obtain the biofeedback EMG signals from patients that will be utilised for future developments. It allows the patients to monitor their arms and muscles movements in real time on the display screen via low-cost webcam. The system aims for home based rehabilitation system and friendly used by patients themselves. The developed integrated system has tested with able subject and it worked perfectly during the test

    Translation of evidence-based Assistive Technologies into stroke rehabilitation: Users' perceptions of the barriers and opportunities

    Get PDF
    Background: Assistive Technologies (ATs), defined as "electrical or mechanical devices designed to help people recover movement", demonstrate clinical benefits in upper limb stroke rehabilitation; however translation into clinical practice is poor. Uptake is dependent on a complex relationship between all stakeholders. Our aim was to understand patients', carers' (P&Cs) and healthcare professionals' (HCPs) experience and views of upper limb rehabilitation and ATs, to identify barriers and opportunities critical to the effective translation of ATs into clinical practice. This work was conducted in the UK, which has a state funded healthcare system, but the findings have relevance to all healthcare systems. Methods. Two structurally comparable questionnaires, one for P&Cs and one for HCPs, were designed, piloted and completed anonymously. Wide distribution of the questionnaires provided data from HCPs with experience of stroke rehabilitation and P&Cs who had experience of stroke. Questionnaires were designed based on themes identified from four focus groups held with HCPs and P&Cs and piloted with a sample of HCPs (N = 24) and P&Cs (N = 8). Eight of whom (four HCPs and four P&Cs) had been involved in the development. Results: 292 HCPs and 123 P&Cs questionnaires were analysed. 120 (41%) of HCP and 79 (64%) of P&C respondents had never used ATs. Most views were common to both groups, citing lack of information and access to ATs as the main reasons for not using them. Both HCPs (N = 53 [34%]) and P&C (N = 21 [47%]) cited Functional Electrical Stimulation (FES) as the most frequently used AT. Research evidence was rated by HCPs as the most important factor in the design of an ideal technology, yet ATs they used or prescribed were not supported by research evidence. P&Cs rated ease of set-up and comfort more highly. Conclusion: Key barriers to translation of ATs into clinical practice are lack of knowledge, education, awareness and access. Perceptions about arm rehabilitation post-stroke are similar between HCPs and P&Cs. Based on our findings, improvements in AT design, pragmatic clinical evaluation, better knowledge and awareness and improvement in provision of services will contribute to better and cost-effective upper limb stroke rehabilitation. © 2014 Hughes et al.; licensee BioMed Central Ltd

    Augmented Reality based Illusion System with biofeedback

    Full text link
    This paper presents the Augmented Reality based Illusion System (ARIS) with biofeedback for upper limb rehabilitation. It aims for fast recovery of motor deficit with motivational approach over traditional upper limb rehabilitation methods. The system incorporates with Augmented Reality (AR) technology to develop upper limb rehabilitation exercise and computer vision with color recognition technique to create 'Fool-the-Brain' concept for fast recovery of neural impairment due to various motor injuries. The rehabilitation exercise in ARIS is aiming to increase the shoulder joint range of motions by performing reaching movements and to strengthen the associated muscles. 'Fool-the-Brain' concept is introduced during performing rehabilitation exercise to perceive artificial visual feedback where user's real impaired arm is covered by Virtual Arm (VA). When the real arm cannot perform the required task, VA will take over the job of real one and will make the user perceives the sense that is still be able to accomplish the task with own effort. Evaluation has performed and results indicate that ARIS with biofeedback is a potential upper limb rehabilitation system for people with upper limb motor deficit. © 2014 IEEE

    Biofeedback systems for stress reduction: Towards a Bright Future for a Revitalized Field

    Get PDF
    Stress has recently been baptized as the black death of the 21st century, which illustrates its threat to current health standards. This article proposes biofeedback systems as a means to reduce stress. A concise state-ofthe-art introduction on biofeedback systems is given. The field of mental health informatics is introduced. A compact state-of-the-art introduction on stress (reduction) is provided. A pragmatic solution for the pressing societal problem of illness due to chronic stress is provided in terms of closed loop biofeedback systems. A concise set of such biofeedback systems for stress reduction is presented. We end with the identification of several development phases and ethical concerns

    Developing a Low-Cost Force Treadmill via Dynamic Modeling

    Get PDF
    By incorporating force transducers into treadmills, force platform-instrumented treadmills (commonly called force treadmills) can collect large amounts of gait data and enable the ground reaction force (GRF) to be calculated. However, the high cost of force treadmills has limited their adoption. This paper proposes a low-cost force treadmill system with force sensors installed underneath a standard exercise treadmill. It identifies and compensates for the force transmission dynamics from the actual GRF applied on the treadmill track surface to the force transmitted to the force sensors underneath the treadmill body. This study also proposes a testing procedure to assess the GRF measurement accuracy of force treadmills. Using this procedure in estimating the GRF of “walk-on-the-spot motion,” it was found that the total harmonic distortion of the tested force treadmill system was about 1.69%, demonstrating the effectiveness of the approach

    Review of the Augmented Reality Systems for Shoulder Rehabilitation

    Get PDF
    Literature shows an increasing interest for the development of augmented reality (AR) applications in several fields, including rehabilitation. Current studies show the need for new rehabilitation tools for upper extremity, since traditional interventions are less effective than in other body regions. This review aims at: Studying to what extent AR applications are used in shoulder rehabilitation, examining wearable/non-wearable technologies employed, and investigating the evidence supporting AR effectiveness. Nine AR systems were identified and analyzed in terms of: Tracking methods, visualization technologies, integrated feedback, rehabilitation setting, and clinical evaluation. Our findings show that all these systems utilize vision-based registration, mainly with wearable marker-based tracking, and spatial displays. No system uses head-mounted displays, and only one system (11%) integrates a wearable interface (for tactile feedback). Three systems (33%) provide only visual feedback; 66% present visual-audio feedback, and only 33% of these provide visual-audio feedback, 22% visual-audio with biofeedback, and 11% visual-audio with haptic feedback. Moreover, several systems (44%) are designed primarily for home settings. Three systems (33%) have been successfully evaluated in clinical trials with more than 10 patients, showing advantages over traditional rehabilitation methods. Further clinical studies are needed to generalize the obtained findings, supporting the effectiveness of the AR applications

    Smart portable rehabilitation devices

    Get PDF
    BACKGROUND: The majority of current portable orthotic devices and rehabilitative braces provide stability, apply precise pressure, or help maintain alignment of the joints with out the capability for real time monitoring of the patient's motions and forces and without the ability for real time adjustments of the applied forces and motions. Improved technology has allowed for advancements where these devices can be designed to apply a form of tension to resist motion of the joint. These devices induce quicker recovery and are more effective at restoring proper biomechanics and improving muscle function. However, their shortcoming is in their inability to be adjusted in real-time, which is the most ideal form of a device for rehabilitation. This introduces a second class of devices beyond passive orthotics. It is comprised of "active" or powered devices, and although more complicated in design, they are definitely the most versatile. An active or powered orthotic, usually employs some type of actuator(s). METHODS: In this paper we present several new advancements in the area of smart rehabilitation devices that have been developed by the Northeastern University Robotics and Mechatronics Laboratory. They are all compact, wearable and portable devices and boast re-programmable, real time computer controlled functions as the central theme behind their operation. The sensory information and computer control of the three described devices make for highly efficient and versatile systems that represent a whole new breed in wearable rehabilitation devices. Their applications range from active-assistive rehabilitation to resistance exercise and even have applications in gait training. The three devices described are: a transportable continuous passive motion elbow device, a wearable electro-rheological fluid based knee resistance device, and a wearable electrical stimulation and biofeedback knee device. RESULTS: Laboratory tests of the devices demonstrated that they were able to meet their design objectives. The prototypes of portable rehabilitation devices presented here did demonstrate that these concepts are capable of the performance their commercially available but non-portable counterparts exhibit. CONCLUSION: Smart, portable devices with the ability for real time monitoring and adjustment open a new era in rehabilitation where the recovery process could be dramatically improved
    corecore