48,542 research outputs found

    Recombination of Shower Partons at High pTp_T in Heavy-Ion Collisions

    Full text link
    A formalism for hadron production at high \pt in heavy-ion collisions has been developed such that all partons hadronize by recombination. The fragmentation of a hard parton is accounted for by the recombination of shower partons that it creates. Such shower partons can also recombine with the thermal partons to form particles that dominate over all other possible modes of hadronization in the 3<pT<83<p_T<8 GeV range. The results for the high \pt spectra of pion, kaon, and proton agree well with experiments. Energy loss of partons in the dense medium is taken into account on the average by an effective parameter by fitting data, and is found to be universal independent of the type of particles produced, as it should. Due to the recombination of thermal and shower partons, the structure of jets produced in nuclear collisions is different from that in pppp collisions. The consequence on same-side correlations is discussed.Comment: This revised version contains minor changes and a new figure

    The Relic Abundance of Long-lived Heavy Colored Particles

    Full text link
    Long-lived colored particles with masses m > 200 GeV are allowed by current accelerator searches, and are predicted by a number of scenarios for physics beyond the standard model. We argue that such "heavy partons'' effectively have a geometrical cross section (of order 10 mb) for annihilation at temperatures below the QCD deconfinement transition. The annihilation process involves the formation of an intermediate bound state of two heavy partons with large orbital angular momentum. The bound state subsequently decays by losing energy and angular momentum to photon or pion emission, followed by annihilation of the heavy partons. This decay occurs before nucleosynthesis for m < 10^{11} GeV for electrically charged partons and m < TeV for electrically neutral partons. This implies that heavy parton lifetimes as long as 10^{14} sec are allowed even for heavy partons with m ~ TeV decaying to photons or hadrons with significant branching fraction.Comment: 13 pages, 4 figures. Minor revision

    Parton coalescence at RHIC

    Get PDF
    Using a covariant coalescence model, we study hadron production in relativistic heavy ion collisions from both soft partons in the quark-gluon plasma and hard partons in minijets. Including transverse flow of soft partons and independent fragmentation of minijet partons, the model is able to describe available experimental data on pion, kaon, and antiproton spectra. The resulting antiproton to pion ratio is seen to increase at low transverse momenta and reaches a value of about one at intermediate transverse momenta, as observed in experimental data at RHIC. A similar dependence of the antikaon to pion ratio on transverse momentum is obtained, but it reaches a smaller value at intermediate transverse momenta. At high transverse momenta, the model predicts that both the antiproton to pion and the antikaon to pion ratio decrease and approach those given by the perturbative QCD. Both collective flow effect and coalescence of minijet partons with partons in the quark-gluon plasma affect significantly the spectra of hadrons with intermediate transverse momenta. Elliptic flows of protons, Lambdas, and Omegas have also been evaluated from partons with elliptic flows extracted from fitting measured pion and kaon elliptic flows, and they are found to be consistent with available experimental data.Comment: 12 pages, 11 figure

    Pedestal and Peak Structure in Jet Correlation

    Full text link
    We study the characteristics of correlation between particles in jets produced in heavy-ion collisions. In the framework of parton recombination we calculate the η\eta and ϕ\phi distributions of a pion associated with a trigger particle. The origin of the pedestal in Δη\Delta\eta is related to the longitudinal expansion of the thermal partons that are enhanced by the energy loss of hard partons traversing the bulk medium. The peaks in Δη\Delta\eta and Δϕ\Delta\phi are related to the same angular spread of the shower partons in a jet cone. No artificial short- or long-range correlations are put in by hand. A large part of the correlation between hadrons in jets is due to the correlation among the shower partons arising from momentum conservation. Recombination between thermal and shower partons dominates the correlation characterisitics in the intermediate pTp_T region.Comment: 14 pages in LaTex and 2 figures in ep
    corecore