7,065 research outputs found

    Genome-Wide Footprints of Pig Domestication and Selection Revealed through Massive Parallel Sequencing of Pooled DNA

    Get PDF
    Background Artificial selection has caused rapid evolution in domesticated species. The identification of selection footprints across domesticated genomes can contribute to uncover the genetic basis of phenotypic diversity. Methodology/Main Findings Genome wide footprints of pig domestication and selection were identified using massive parallel sequencing of pooled reduced representation libraries (RRL) representing ~2% of the genome from wild boar and four domestic pig breeds (Large White, Landrace, Duroc and Pietrain) which have been under strong selection for muscle development, growth, behavior and coat color. Using specifically developed statistical methods that account for DNA pooling, low mean sequencing depth, and sequencing errors, we provide genome-wide estimates of nucleotide diversity and genetic differentiation in pig. Widespread signals suggestive of positive and balancing selection were found and the strongest signals were observed in Pietrain, one of the breeds most intensively selected for muscle development. Most signals were population-specific but affected genomic regions which harbored genes for common biological categories including coat color, brain development, muscle development, growth, metabolism, olfaction and immunity. Genetic differentiation in regions harboring genes related to muscle development and growth was higher between breeds than between a given breed and the wild boar. Conclusions/Significance These results, suggest that although domesticated breeds have experienced similar selective pressures, selection has acted upon different genes. This might reflect the multiple domestication events of European breeds or could be the result of subsequent introgression of Asian alleles. Overall, it was estimated that approximately 7% of the porcine genome has been affected by selection events. This study illustrates that the massive parallel sequencing of genomic pools is a cost-effective approach to identify footprints of selection

    A Multistage Approach to the Selective Assembly of Components Without Dimensional Distribution Assumptions

    Get PDF
    Selective assembly is a means of obtaining higher quality product assemblies by using relatively low-quality components. Components are selected and classified according to their dimensions and then assembled. Past research has often focused on components that have normal dimensional distributions to try to find assemblies with minimal variation and surplus parts. This paper presents a multistage approach to selective assembly for all distributions of components and with no surplus, thus offering less variation compared to similar approaches. The problem is divided into different stages and a genetic algorithm (GA) is used to find the best combination of groups of parts in each stage. This approach is applied to two available cases from the literature. The results show improvement of up to 20% in variation compared to past approaches

    Algorithms and Methods for Designing and Scheduling Smart Manufacturing Systems

    Get PDF
    This book, as a Special Issue, is a collection of some of the latest advancements in designing and scheduling smart manufacturing systems. The smart manufacturing concept is undoubtedly considered a paradigm shift in manufacturing technology. This conception is part of the Industry 4.0 strategy, or equivalent national policies, and brings new challenges and opportunities for the companies that are facing tough global competition. Industry 4.0 should not only be perceived as one of many possible strategies for manufacturing companies, but also as an important practice within organizations. The main focus of Industry 4.0 implementation is to combine production, information technology, and the internet. The presented Special Issue consists of ten research papers presenting the latest works in the field. The papers include various topics, which can be divided into three categories—(i) designing and scheduling manufacturing systems (seven articles), (ii) machining process optimization (two articles), (iii) digital insurance platforms (one article). Most of the mentioned research problems are solved in these articles by using genetic algorithms, the harmony search algorithm, the hybrid bat algorithm, the combined whale optimization algorithm, and other optimization and decision-making methods. The above-mentioned groups of articles are briefly described in this order in this book

    An efficient genetic algorithm application in assembly line balancing.

    Get PDF
    The main achievement of this research is the development of a genetic algorithm model as a solution approach to the single model assembly line balancing problem (SMALBP), considered a difficult combinatorial optimisation problem. This is accomplished by developing a genetic algorithm with a new fitness function and genetic operators. The novel fitness function is based on a new front-loading concept capable of yielding substantially improved and sometimes optimum solutions for the SMALBP. The new genetic operators include a modified selection technique, moving crossover point technique, rank positional weight based repair method and dynamic mutation technique. The moving crossover point technique addressed the issue of propagating best attributes from parents to offspring and also supports the forward loading process. The new selection technique was developed by modifying the original rank-based selection scheme. This eliminates the high selective pressure associate with the original rank-based technique. Furthermore, the modified selection technique allows the algorithm to run long enough, if required, without premature convergence and this feature is very useful for balancing more complex real world problems. The repair technique included in this model repairs a higher proportion of distorted chromosomes after crossover than previous methods. Moreover, a third innovative feature, a moving adjacent mutation technique, strengthens the forward loading procedure and accelerates convergence. The performance of the front-loading fitness function currently outperforms the published fitness functions and fifty-four published test cases generated from sixteen precedence networks are used to assess the overall performance of the model. Encompassing the new genetic algorithm concepts, forty-four test problems (81%) achieved the best solutions obtained by published techniques and twenty-four problems (44%) produced better results than the benchmark Hoffmann precedence procedure, the closest non-genetic algorithm method. The superiority of the genetic model over other heuristics is identified in this research and future developments of this genetic algorithm application for assembly line balancing problems is evident

    Individualizing assembly processes for geometric quality improvement

    Get PDF
    Dimensional deviations are a consequence of the mass production of parts. These deviations can be controlled by tightening production tolerances. However, this solution is not always desired because it usually increases production costs. The availability of massive amounts of data about products and automatized production has opened new opportunities to improve products\u27 geometrical quality by individualizing the assembly process. This individualization can be conducted through several techniques, including selective assembly, locator adjustments, weld sequence optimization, and clamping sequence optimization in a smart assembly line for spot-welded sheet metal assemblies. This study focuses on two techniques of individualizing the assembly process, selective assembly, and individualized locator adjustments in assembly fixtures. The existing studies and applications of these methods are reviewed, and the research gaps are defined. The previous applications of selective assembly are limited to linear and rigid assemblies. This study develops the application of selective assembly for sheet metal assemblies. This research addresses another research gap regarding the selective assembly of sheet metals by reducing the calculation cost associated with this technique. This study also develops a new locator adjustment method. This method utilizes scanned geometries of mating parts to predict the required adjustments. Afterward, a method for individualized adjustments is also developed. Considering applied and residual stresses during the assembly process as constraints is another contribution of this research to locator adjustments. These methods are applied to three industrial sample cases and the results evaluated. The results illustrate that individualization in locator adjustments can increase geometrical quality improvements three to four times.Accumulation of the potential improvements from both techniques in a smart assembly line is also evaluated in this study. The results indicate that combining the techniques may not increase the geometrical quality significantly relative to using only individualized locator adjustments.A crucial factor in the achievable improvements through individualization is the utilized assembly fixture layout. This study develops a method of designing the optimal fixture layout for sheet metal assemblies. Different design and production strategies are investigated to acquire the maximum potential for geometrical improvements through individualization in self-adjusting smart assembly lines

    Adaptive genomic structural variation in the grape powdery mildew pathogen, Erysiphe necator.

    Get PDF
    BackgroundPowdery mildew, caused by the obligate biotrophic fungus Erysiphe necator, is an economically important disease of grapevines worldwide. Large quantities of fungicides are used for its control, accelerating the incidence of fungicide-resistance. Copy number variations (CNVs) are unbalanced changes in the structure of the genome that have been associated with complex traits. In addition to providing the first description of the large and highly repetitive genome of E. necator, this study describes the impact of genomic structural variation on fungicide resistance in Erysiphe necator.ResultsA shotgun approach was applied to sequence and assemble the genome of five E. necator isolates, and RNA-seq and comparative genomics were used to predict and annotate protein-coding genes. Our results show that the E. necator genome is exceptionally large and repetitive and suggest that transposable elements are responsible for genome expansion. Frequent structural variations were found between isolates and included copy number variation in EnCYP51, the target of the commonly used sterol demethylase inhibitor (DMI) fungicides. A panel of 89 additional E. necator isolates collected from diverse vineyard sites was screened for copy number variation in the EnCYP51 gene and for presence/absence of a point mutation (Y136F) known to result in higher fungicide tolerance. We show that an increase in EnCYP51 copy number is significantly more likely to be detected in isolates collected from fungicide-treated vineyards. Increased EnCYP51 copy numbers were detected with the Y136F allele, suggesting that an increase in copy number becomes advantageous only after the fungicide-tolerant allele is acquired. We also show that EnCYP51 copy number influences expression in a gene-dose dependent manner and correlates with fungal growth in the presence of a DMI fungicide.ConclusionsTaken together our results show that CNV can be adaptive in the development of resistance to fungicides by providing increasing quantitative protection in a gene-dosage dependent manner. The results of this work not only demonstrate the effectiveness of using genomics to dissect complex traits in organisms with very limited molecular information, but also may have broader implications for understanding genomic dynamics in response to strong selective pressure in other pathogens with similar genome architectures

    Genome-wide inference of ancestral recombination graphs

    Get PDF
    The complex correlation structure of a collection of orthologous DNA sequences is uniquely captured by the "ancestral recombination graph" (ARG), a complete record of coalescence and recombination events in the history of the sample. However, existing methods for ARG inference are computationally intensive, highly approximate, or limited to small numbers of sequences, and, as a consequence, explicit ARG inference is rarely used in applied population genomics. Here, we introduce a new algorithm for ARG inference that is efficient enough to apply to dozens of complete mammalian genomes. The key idea of our approach is to sample an ARG of n chromosomes conditional on an ARG of n-1 chromosomes, an operation we call "threading." Using techniques based on hidden Markov models, we can perform this threading operation exactly, up to the assumptions of the sequentially Markov coalescent and a discretization of time. An extension allows for threading of subtrees instead of individual sequences. Repeated application of these threading operations results in highly efficient Markov chain Monte Carlo samplers for ARGs. We have implemented these methods in a computer program called ARGweaver. Experiments with simulated data indicate that ARGweaver converges rapidly to the true posterior distribution and is effective in recovering various features of the ARG for dozens of sequences generated under realistic parameters for human populations. In applications of ARGweaver to 54 human genome sequences from Complete Genomics, we find clear signatures of natural selection, including regions of unusually ancient ancestry associated with balancing selection and reductions in allele age in sites under directional selection. Preliminary results also indicate that our methods can be used to gain insight into complex features of human population structure, even with a noninformative prior distribution.Comment: 88 pages, 7 main figures, 22 supplementary figures. This version contains a substantially expanded genomic data analysi

    Quantitative Genetic Mapping and Genome Assembly in the Lesser Wax Moth Achroia grisella

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 International License.Specific characteristics of the male Achroia grisella acoustic mating signal determine a male’s attractiveness toward females. These features are genetically variable in populations, and mapping experiments have been used to identify loci contributing to song variation, and understand the evolutionary forces acting on this important sexual trait. Here we built on this foundation and carried out QTL (Quantitative Trait Locus) mapping using >1,000 recombinant individuals, genotyping this large cohort at thousands of sequence-based markers covering the entire collection of 30 A. grisella chromosomes. This dense marker set, coupled with our development of an annotated, draft genome of A. grisella, allowed us to link >3,000 genome scaffolds, >10,000 predicted genes, and close to 275Mb of genome sequence to chromosomes. Our QTL mapping confirmed a fraction of the QTL identified in a previous study, and additionally revealed novel loci. Collectively, QTL explained only small fractions of the phenotypic variance, suggesting many more causative factors remain below the detection threshold of our study. A surprising, and ultimately challenging feature of our study was the low level of intrachromosomal recombination present in our mapping population. This led to difficulty ordering markers along linkage groups, necessitating a chromosome-by-chromosome mapping approach, rather than true interval mapping, and precluded confident ordering/orienting of scaffolds along each chromosome. Nonetheless, our study increased the genomic resources available for the A. grisella system. Enabled by ever more powerful technologies, future investigators will be able to leverage our data to provide more detailed genetic dissection of male song variation in A. grisella.NSF IOB-0516634NIGMS award P20GM103638NIGMS award P20GM103418NIH R01 GM085260NIH R01 OD01097

    Joint assembly and genetic mapping of the Atlantic horseshoe crab genome reveals ancient whole genome duplication

    Get PDF
    Horseshoe crabs are marine arthropods with a fossil record extending back approximately 450 million years. They exhibit remarkable morphological stability over their long evolutionary history, retaining a number of ancestral arthropod traits, and are often cited as examples of "living fossils." As arthropods, they belong to the Ecdysozoa}, an ancient super-phylum whose sequenced genomes (including insects and nematodes) have thus far shown more divergence from the ancestral pattern of eumetazoan genome organization than cnidarians, deuterostomes, and lophotrochozoans. However, much of ecdysozoan diversity remains unrepresented in comparative genomic analyses. Here we use a new strategy of combined de novo assembly and genetic mapping to examine the chromosome-scale genome organization of the Atlantic horseshoe crab Limulus polyphemus. We constructed a genetic linkage map of this 2.7 Gbp genome by sequencing the nuclear DNA of 34 wild-collected, full-sibling embryos and their parents at a mean redundancy of 1.1x per sample. The map includes 84,307 sequence markers and 5,775 candidate conserved protein coding genes. Comparison to other metazoan genomes shows that the L. polyphemus genome preserves ancestral bilaterian linkage groups, and that a common ancestor of modern horseshoe crabs underwent one or more ancient whole genome duplications (WGDs) ~ 300 MYA, followed by extensive chromosome fusion
    • …
    corecore