33 research outputs found

    Applications of Lattice Codes in Communication Systems

    Get PDF
    In the last decade, there has been an explosive growth in different applications of wireless technology, due to users' increasing expectations for multi-media services. With the current trend, the present systems will not be able to handle the required data traffic. Lattice codes have attracted considerable attention in recent years, because they provide high data rate constellations. In this thesis, the applications of implementing lattice codes in different communication systems are investigated. The thesis is divided into two major parts. Focus of the first part is on constellation shaping and the problem of lattice labeling. The second part is devoted to the lattice decoding problem. In constellation shaping technique, conventional constellations are replaced by lattice codes that satisfy some geometrical properties. However, a simple algorithm, called lattice labeling, is required to map the input data to the lattice code points. In the first part of this thesis, the application of lattice codes for constellation shaping in Orthogonal Frequency Division Multiplexing (OFDM) and Multi-Input Multi-Output (MIMO) broadcast systems are considered. In an OFDM system a lattice code with low Peak to Average Power Ratio (PAPR) is desired. Here, a new lattice code with considerable PAPR reduction for OFDM systems is proposed. Due to the recursive structure of this lattice code, a simple lattice labeling method based on Smith normal decomposition of an integer matrix is obtained. A selective mapping method in conjunction with the proposed lattice code is also presented to further reduce the PAPR. MIMO broadcast systems are also considered in the thesis. In a multiple antenna broadcast system, the lattice labeling algorithm should be such that different users can decode their data independently. Moreover, the implemented lattice code should result in a low average transmit energy. Here, a selective mapping technique provides such a lattice code. Lattice decoding is the focus of the second part of the thesis, which concerns the operation of finding the closest point of the lattice code to any point in N-dimensional real space. In digital communication applications, this problem is known as the integer least-square problem, which can be seen in many areas, e.g. the detection of symbols transmitted over the multiple antenna wireless channel, the multiuser detection problem in Code Division Multiple Access (CDMA) systems, and the simultaneous detection of multiple users in a Digital Subscriber Line (DSL) system affected by crosstalk. Here, an efficient lattice decoding algorithm based on using Semi-Definite Programming (SDP) is introduced. The proposed algorithm is capable of handling any form of lattice constellation for an arbitrary labeling of points. In the proposed methods, the distance minimization problem is expressed in terms of a binary quadratic minimization problem, which is solved by introducing several matrix and vector lifting SDP relaxation models. The new SDP models provide a wealth of trade-off between the complexity and the performance of the decoding problem

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modiïŹed our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the ïŹeld of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Peak to average power ratio reduction and error control in MIMO-OFDM HARQ System

    Get PDF
    Currently, multiple-input multiple-output orthogonal frequency division multiplexing (MIMOOFDM) systems underlie crucial wireless communication systems such as commercial 4G and 5G networks, tactical communication, and interoperable Public Safety communications. However, one drawback arising from OFDM modulation is its resulting high peak-to-average power ratio (PAPR). This problem increases with an increase in the number of transmit antennas. In this work, a new hybrid PAPR reduction technique is proposed for space-time block coding (STBC) MIMO-OFDM systems that combine the coding capabilities to PAPR reduction methods, while leveraging the new degree of freedom provided by the presence of multiple transmit chairs (MIMO). In the first part, we presented an extensive literature review of PAPR reduction techniques for OFDM and MIMO-OFDM systems. The work developed a PAPR reduction technique taxonomy, and analyzed the motivations for reducing the PAPR in current communication systems, emphasizing two important motivations such as power savings and coverage gain. In the tax onomy presented here, we include a new category, namely, hybrid techniques. Additionally, we drew a conclusion regarding the importance of hybrid PAPR reduction techniques. In the second part, we studied the effect of forward error correction (FEC) codes on the PAPR for the coded OFDM (COFDM) system. We simulated and compared the CCDF of the PAPR and its relationship with the autocorrelation of the COFDM signal before the inverse fast Fourier transform (IFFT) block. This allows to conclude on the main characteristics of the codes that generate high peaks in the COFDM signal, and therefore, the optimal parameters in order to reduce PAPR. We emphasize our study in FEC codes as linear block codes, and convolutional codes. Finally, we proposed a new hybrid PAPR reduction technique for an STBC MIMO-OFDM system, in which the convolutional code is optimized to avoid PAPR degradation, which also combines successive suboptimal cross-antenna rotation and inversion (SS-CARI) and iterative modified companding and filtering schemes. The new method permits to obtain a significant net gain for the system, i.e., considerable PAPR reduction, bit error rate (BER) gain as compared to the basic MIMO-OFDM system, low complexity, and reduced spectral splatter. The new hybrid technique was extensively evaluated by simulation, and the complementary cumulative distribution function (CCDF), the BER, and the power spectral density (PSD) were compared to the original STBC MIMO-OFDM signal

    Wireless interference networks with limited feedback

    Get PDF
    Wir betrachten das Problem der Akquirierung von Kanalzustandsinformationen an den Sendern von drahtlosen Netzwerken und entwickeln Feedbackverfahren und Sendestrategien fĂŒr verschiedene Netzwerk Architekturen. Die entwickelten Verfahren werden analysiert und die Skalierung der Performance des Gesamtsystems anhand bestimmter Systemparameter bestimmt. Zuerst betrachten wir eine einzelne Zelle eines zellularen Systems und nehmen an, dass die Beamformingvektoren durch ein festes Codebuch vorgegeben sind. Wir entwickeln und analysieren ein neues Feedbackverfahren, dass FlexibilitĂ€t und Robustheit vereint und dadurch effiziente und zuverlĂ€ssige Kommunikation mit den EmpfĂ€ngern ermöglicht. Eine Analyse des Verfahrens zeigt, dass die Skalierung des Ratenverlustes durch quantisierte Kanalzustandsinformation besser ist als bei vergleichbaren Verfahren. FĂŒr das Feedbackverfahren wird ein spezieller Algorithmus entwickelt der es ermöglicht CodebĂŒcher fĂŒr verschiedene Kanalmodelle zu generieren und zu optimieren. Die analytischen Ergebnisse werden durch Simulationen validiert und bestĂ€tigen einen Gewinn gegenĂŒber vergleichbaren Verfahren. Anschließend betrachten wir zellulare Systeme mit mehreren Zellen. Wir charakterisieren die Freiheitsgrade (degrees of freedom) unter verschiedenen Annahmen ĂŒber das Kanalmodell. Des weiteren entwickeln wir verschiedene Algorithmen, die die optimalen Freiheitsgrade erreichen können. Anschließend wird ein Feedbackverfahren entwickelt, dass den Feedbackaufwand fĂŒr die entwickelten Algorithmen signifikant reduziert. Wir analysieren eine breite Klasse von zellularen Systemen die beliebige koordinierte Sendestrategien verwenden. FĂŒr diese Klasse von Systemen leiten wir die Skalierung des Ratenverlustes relativ zum Feedbackaufwand her. Abschließend zeigen wir, wie die analytischen Ergebnisse auf das entwickelte Feedbackverfahren angewendet werden können. Im letzten Kapitel entwickeln wir ein Framework, dass das Potenzial von Compressed Sensing nutzt um den Messaufwand und Feedbackaufwand in zellularen Systemen mit vielen Teilnehmern signifikant zu reduzieren. Das Framework ermöglicht es die Datenraten der Nutzer innerhalb gegebener Fehlerschranken zu schĂ€tzen. Grundlage ist neben Compressed Sensing ein neues Messverfahren, dass die Überlagerung von Signalen im Kanal nutzt, um zufĂ€llige nicht adaptive Messungen der Kanalkoeffizienten am EmpfĂ€nger zu ermöglichen. Diese Messungen werden zu einer zentralen Steuereinheit ĂŒbertragen und dort dekodiert. Wir analysieren die Genauigkeit der Rekonstruktion fĂŒr einen linearen und einen nicht-linearen Dekodierer und leiten die Skalierung mit der Anzahl der Messungen her. Abschließend zeigen wir, wie der entwickelte Ansatz in zellularen Systemen angewendet werden kann.We consider the problem of acquiring accurate channel state information at the transmitters of a wireless network. We develop different feedback and transmit strategies for different network architectures and analyze their performance. First, we consider a single cell of cellular system and assume that the beamforming vectors are given by a fixed transmit codebook. We develop and analyze a new feedback and transmit strategy which combines flexibility and robustness needed for efficient and reliable communication. We prove that it has better scaling properties compared to classical results on the limited feedback problem in the broadcast channel and that this benefit improves with an increasing number of transmit antennas. We show how feedback codebooks can be designed for different propagation environments. Link level and system level simulations sustain the analytic results showing performance gains of up to 50 % or 70 % compared to zeroforcing when using multiple antennas at the base station and multiple antennas or a single antenna at the terminals, respectively. We characterize the degrees of freedom (i.e. the multiplexing gain) of multi-cellular systems under different assumptions on the channel model and for different system setups. We propose different algorithms that possibly achieve the optimal degrees of freedom. The first algorithm aims on aligning the interference at each receiver in a subspace of the available receive space. Our second algorithm aims on directly maximizing the signal-to-interference-plus-noise ratio (SINR) of all receivers. By allowing symbol extensions over time or frequency and including a user selection we are able to achieve the alignment of interference for many system setups and exploit multi-user diversity. For coordinated transmit strategies we find the scaling of the performance loss with the feedback load. A distributed interference alignment algorithm is introduced. The algorithm makes efficient use of quantized channel state information and significantly reduces the feedback overhead. We develop a framework that we call compressive rate estimation. To this end, we assume that the composite channel gain matrix (i.e. the matrix of all channel gains between all network nodes) is compressible which means it can be approximated by a sparse or low rank representation. We develop a sensing protocol that exploits the superposition principle of the wireless channel and enables the receiving nodes to obtain non-adaptive random measurements of columns of the composite channel matrix. The random measurements are fed back to a central controller who decodes the composite channel gain matrix (or parts of it) and estimates individual user rates. We analyze the rate loss for a linear and a non-linear decoder and find the scaling laws according to the number of non-adaptive measurements

    Resource management techniques for sustainable networks with energy harvesting nodes

    Get PDF
    Premi extraordinari doctorat UPC curs 2015-2016, Ă mbit Enginyeria de les TICThis dissertation proposes novel techniques for assigning resources of wireless networks by considering that the coverage radii are small, implying that some power consumption sinks not considered so far shouldnow be introduced, and by considering that the devices are battery-powered terminals provided with energy harvesting capabilities. In this framework, two different configurations in terms of harvesting capabilities are considered. First, we assume that the energy source is external and not controllable, e.g. solar energy. In this context, the proposed design should adapt to the energy that is currently being harvested. We also study the effect of having a finite backhaul connection that links the wireless access network with the core network. On the other hand, we propose a design in which the transmitter feeds actively the receivers with energy by transmitting signals that receivers use for recharging their batteries. In this case, the power transfer design should be carried out jointly with the power control strategy for users that receive information as both procedures, transfer of information and transfer of power, are implemented at the transmitter and make use of a common resource, i.e., power. Apart from techniques for assigning the radio resources, this dissertation develops a procedure for switching on and off base stations. Concerning this, it is important to notice that the traffic profile is not constant throughout the day. This is precisely the feature that can be exploited to define a strategy based on a dynamic selection of the base stations to be switched off when the traffic load is low, without affecting the quality experienced by the users. Thanks to this procedure, we are able to deploy smaller energy harvesting sources and smaller batteries and, thus, to reduce the cost of the network deployment. Finally, we derive some procedures to optimize high level decisions of the network operation in which variables from several layers of the protocol stack are involved. In this context, admission control procedures for deciding which user should be connected to which base station are studied, taking into account information of the average channel information, the current battery levels, etc. A multi-tier multi-cell scenario is assumed in which base stations belonging to different tiers have different capabilities, e.g., transmission power, battery size, end energy harvesting source size. A set of strategies that require different computational complexity are derived for scenarios with different user mobility requirements.Aquesta tesis doctoral proposa tĂšcniques per assignar els recursos disponibles a les xarxes wireless considerant que els radis de cobertura sĂłn petits, el que implica que altres fonts de consum d’energia no considerades fins al moment s’hagin d’introduir dins els dissenys, i considerant que els dispositius estan alimentats amb bateries finites i que tenen a la seva disposiciĂł fonts de energy harvesting. En aquest context, es consideren dues configuracions diferents en funciĂł de les capacitats de l’energia harvesting. En primer lloc, s’assumirĂ  que la font d’energia Ă©s externa i incontrolable com, per exemple, l’energia solar. Els dissenys proposats han d’adaptar-se a l’energia que s’estĂ  recol·lectant en un precĂ­s moment. En segon lloc, es proposa un disseny en el qual el transmissor Ă©s capaç d’enviar energia als receptors mitjançant senyals de radiofreqĂŒĂšncia dissenyats per aquest fi, energia que Ă©s utilitzada per recarregar les bateries. A part de tĂšcniques d’assignaciĂł de recursos radio, en aquesta tesis doctoral es desenvolupa un procediment dinĂ mic per apagar i encendre estacions base. És important notar que el perfil de trĂ fic no Ă©s constant al llarg del dia. Aquest Ă©s precisament el patrĂł que es pot explotar per definir una estratĂšgia dinĂ mica per poder decidir quines estaciones base han de ser apagades, tot aixĂČ sense afectar la qualitat experimentada pels usuaris. GrĂ cies a aquest procediment, es possible desplegar fonts d'energy harvesting mĂ©s petites i bateries mĂ©s petites. Finalment, aquesta tesis doctoral presenta procediments per optimitzar decisions de nivell mĂ©s alt que afecten directament al funcionament global de la xarxa d’accĂ©s. Per prendre aquestes decisions, es fa Ășs de diverses variables que pertanyen a diferents capes de la pila de protocols. En aquest context, aquesta tesis aborda el disseny de tĂšcniques de control d’admissiĂł d’usuaris a estacions base en entorns amb mĂșltiples estacions base, basant-se amb la informaciĂł estadĂ­stica dels canals, i el nivell actual de les bateries, entre altres. L'escenari considerat estĂ  format per mĂșltiples estacions base, on cada estaciĂł base pertany a una famĂ­lia amb diferents capacitats, per exemple, potĂšncia de transmissiĂł o mida de la bateria. Es deriven un conjunt de tĂšcniques amb diferents costos computacionals que sĂłn d'utilitat per a poder aplicar a escenaris amb diferents mobilitats d’usuaris.Award-winningPostprint (published version

    Robust beamforming for collaborative MIMO-OFDM wireless systems

    Get PDF
    Collaborative beamforming is a powerful technique to increase communication energy efficiency and range in an energy-constrained network. To achieve high performance, collaborative beamforming requires accurate knowledge of channel state information (CSI) at the transmitters (collaborative nodes). In practice, however, such exact knowledge of CSI is not available. A robust transmitter design based on partial CSI is required to mitigate the effects of CSI mismatches.This thesis focuses on the design and evaluation of a beamforming scheme that is robust to CSI mismatches for collaborative multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) wireless systems. Using a max-min robust design approach, the robust beamformer is designed to maximize the minimum (worst-case) received signal-to-noise ratio (SNR) within a predefined uncertainty region at each OFDM subcarrier. In addition, several subcarrier power allocation strategies are investigated to further improve the robustness of collaborative systems. Numerical simulation results show that the robust beamformer offers improved performance over the nonrobust beamformers and the use of power allocation strategies among subcarriers further improves the system performance

    Carrier frequency offset estimation for orthogonal frequency division multiplexing systems

    Get PDF
    Orthogonal frequency division multiplexing (OFDM) is an attractive modulation scheme used in wideband communications because it essentially transforms the frequency selective channel into a flat fading channel. Furthermore, the combination of multiple-input multiple-output (MIMO) signal processing and OFDM seems to be an ideal solution for supporting reliable high data rate transmission for future wireless communication systems. However, despite the great advantages OFDM systems offer, such systems present challenges of their own. One of the most important challenges is carrier frequency offset (CFO) estimation, which is crucial in building reliable wireless communication systems. In this thesis, we consider CFO estimation for the downlink and uplink OFDM systems. For the downlink channel, we focus on blind schemes where the cost functions are designed such that they exploit implicit properties associated with the transmitted signal where no training signal is required. By taking the unconditional maximum likelihood approach, we propose a virtual subcarrier based blind scheme for MIMO-OFDM systems in the presence of spatial correlation. We conclude that the presence of spatial correlation does not impact the CFO estimation significantly. We also propose a CFO estimator for OFDM systems with constant modulus signaling and extend it to MIMO-OFDM systems employing orthogonal space-time block coding. The curve fitting method is used which gives a closed-form expression for CFO estimation. Therefore, the proposed scheme provides an excellent trade-off between complexity and performance as compared to prominent existing estimation schemes. Furthermore, we design a blind CFO estimation scheme for differentially modulated OFDM systems based on the finite alphabet constraint. It can achieve better performance at high signal-to-noise ratios (SNRs) at the expense of some additional computational complexity as compared to the schemes based on the constant modulus constraint. The constrained Cramer-Rao lower bound (CRLB) is also derived for the blind estimation scheme. As for the uplink channel, which is a more challenging problem, we propose two training aided schemes. One is based on a scalar extended Kalman filter (EKF) and the other one is on the variable projection (VP) algorithm. For both schemes, we assume that the system uses an arbitrary subcarrier assignment scheme, which is more involved than the other two schemes, namely block and interleaved subcarrier assignment scheme. In the first scheme, to apply the scalar EKF algorithm, we represent the measurement equation as a function of a scalar state, i.e., each user's CFO, in lieu of a state vector which consists of both CFO and channel coefficients by replacing the unknown channel coefficients with a nonlinear function of CFO. This proposed scheme can achieve the CRLB at high SNR for two users with a complexity lower than that of the alternating-projection method. In the second scheme, the VP algorithm is used for CFO estimation which is followed with a robust minimum mean square error (MMSE) estimator for channel estimation. In the VP algorithm, the nonlinear least square cost function is optimized numerically by updating the CFOs and channel coefficients separately at each iteration. We demonstrate that this proposed scheme is superior to the existing methods in terms of convergence speed, computational complexity and estimation performance

    Joint transceiver design and power optimization for wireless sensor networks in underground mines

    Get PDF
    Avec les grands dĂ©veloppements des technologies de communication sans fil, les rĂ©seaux de capteurs sans fil (WSN) ont attirĂ© beaucoup d’attention dans le monde entier au cours de la derniĂšre dĂ©cennie. Les rĂ©seaux de capteurs sans fil sont maintenant utilisĂ©s pour a surveillance sanitaire, la gestion des catastrophes, la dĂ©fense, les tĂ©lĂ©communications, etc. De tels rĂ©seaux sont utilisĂ©s dans de nombreuses applications industrielles et commerciales comme la surveillance des processus industriels et de l’environnement, etc. Un rĂ©seau WSN est une collection de transducteurs spĂ©cialisĂ©s connus sous le nom de noeuds de capteurs avec une liaison de communication distribuĂ©e de maniĂšre alĂ©atoire dans tous les emplacements pour surveiller les paramĂštres. Chaque noeud de capteur est Ă©quipĂ© d’un transducteur, d’un processeur de signal, d’une unitĂ© d’alimentation et d’un Ă©metteur-rĂ©cepteur. Les WSN sont maintenant largement utilisĂ©s dans l’industrie miniĂšre souterraine pour surveiller certains paramĂštres environnementaux, comme la quantitĂ© de gaz, d’eau, la tempĂ©rature, l’humiditĂ©, le niveau d’oxygĂšne, de poussiĂšre, etc. Dans le cas de la surveillance de l’environnement, un WSN peut ĂȘtre remplacĂ© de maniĂšre Ă©quivalente par un rĂ©seau Ă  relais Ă  entrĂ©es et sorties multiples (MIMO). Les rĂ©seaux de relais multisauts ont attirĂ© un intĂ©rĂȘt de recherche important ces derniers temps grĂące Ă  leur capacitĂ© Ă  augmenter la portĂ©e de la couverture. La liaison de communication rĂ©seau d’une source vers une destination est mise en oeuvre en utilisant un schĂ©ma d’amplification/transmission (AF) ou de dĂ©codage/transfert (DF). Le relais AF reçoit des informations du relais prĂ©cĂ©dent et amplifie simplement le signal reçu, puis il le transmet au relais suivant. D’autre part, le relais DF dĂ©code d’abord le signal reçu, puis il le transmet au relais suivant au deuxiĂšme Ă©tage s’il peut parfaitement dĂ©coder le signal entrant. En raison de la simplicitĂ© analytique, dans cette thĂšse, nous considĂ©rons le schĂ©ma de relais AF et les rĂ©sultats de ce travail peuvent Ă©galement ĂȘtre dĂ©veloppĂ©s pour le relais DF. La conception d’un Ă©metteur/rĂ©cepteur pour le relais MIMO multisauts est trĂšs difficile. Car Ă  l’étape de relais L, il y a 2L canaux possibles. Donc, pour un rĂ©seau Ă  grande Ă©chelle, il n’est pas Ă©conomique d’envoyer un signal par tous les liens possibles. Au lieu de cela, nous pouvons trouver le meilleur chemin de la source Ă  la destination qui donne le rapport signal sur bruit (SNR) de bout en bout le plus Ă©levĂ©. Nous pouvons minimiser la fonction objectif d’erreur quadratique moyenne (MSE) ou de taux d’erreur binaire (BER) en envoyant le signal utilisant le chemin sĂ©lectionnĂ©. L’ensemble de relais dans le chemin reste actif et le reste des relais s’éteint, ce qui permet d’économiser de l’énergie afin d’amĂ©liorer la durĂ©e de vie du rĂ©seau. Le meilleur chemin de transmission de signal a Ă©tĂ© Ă©tudiĂ© dans la littĂ©rature pour un relais MIMO Ă  deux bonds mais est plus complexe pour un ...With the great developments in wireless communication technologies, Wireless Sensor Networks (WSNs) have gained attention worldwide in the past decade and are now being used in health monitoring, disaster management, defense, telecommunications, etc. Such networks are used in many industrial and consumer applications such as industrial process and environment monitoring, among others. A WSN network is a collection of specialized transducers known as sensor nodes with a communication link distributed randomly in any locations to monitor environmental parameters such as water level, and temperature. Each sensor node is equipped with a transducer, a signal processor, a power unit, and a transceiver. WSNs are now being widely used in the underground mining industry to monitor environmental parameters, including the amount of gas, water, temperature, humidity, oxygen level, dust, etc. The WSN for environment monitoring can be equivalently replaced by a multiple-input multiple-output (MIMO) relay network. Multi-hop relay networks have attracted significant research interest in recent years for their capability in increasing the coverage range. The network communication link from a source to a destination is implemented using the amplify-and-forward (AF) or decode-and-forward (DF) schemes. The AF relay receives information from the previous relay and simply amplifies the received signal and then forwards it to the next relay. On the other hand, the DF relay first decodes the received signal and then forwards it to the next relay in the second stage if it can perfectly decode the incoming signal. For analytical simplicity, in this thesis, we consider the AF relaying scheme and the results of this work can also be developed for the DF relay. The transceiver design for multi-hop MIMO relay is very challenging. This is because at the L-th relay stage, there are 2L possible channels. So, for a large scale network, it is not economical to send the signal through all possible links. Instead, we can find the best path from source-to-destination that gives the highest end-to-end signal-to-noise ratio (SNR). We can minimize the mean square error (MSE) or bit error rate (BER) objective function by sending the signal using the selected path. The set of relay in the path remains active and the rest of the relays are turned off which can save power to enhance network life-time. The best path signal transmission has been carried out in the literature for 2-hop MIMO relay and for multiple relaying it becomes very complex. In the first part of this thesis, we propose an optimal best path finding algorithm at perfect channel state information (CSI). We consider a parallel multi-hop multiple-input multiple-output (MIMO) AF relay system where a linear minimum mean-squared error (MMSE) receiver is used at the destination. We simplify the parallel network into equivalent series multi-hop MIMO relay link using best relaying, where the best relay ..

    Advanced Signal Processing for MIMO-OFDM Receivers

    Get PDF
    corecore