439 research outputs found

    An intelligent genetic algorithm for PAPR reduction in a multi-carrier CDMA wireless system

    Get PDF
    Abstract— A novel intelligent genetic algorithm (GA), called Minimum Distance guided GA (MDGA) is proposed for peak-average-power ratio (PAPR) reduction based on partial transmit sequence (PTS) scheme in a synchronous Multi-Carrier Code Division Multiple Access (MC-CDMA) system. In contrast to traditional GA, our MDGA starts with a balanced ratio of exploration and exploitation which is maintained throughout the process. It introduces a novel replacement strategy which increases significantly the convergence rate and reduce dramatically computational complexity as compared to the conventional GA. The simulation results demonstrate that, if compared to the PAPR reduction schemes using exhaustive search and traditional GA, our scheme achieves 99.52% and 50+% reduction in computational complexity respectively

    Frequency-Selective PAPR Reduction for OFDM

    Get PDF
    We study the peak-to-average power ratio (PAPR) problem in orthogonal frequency-division multiplexing (OFDM) systems. In conventional clipping and filtering based PAPR reduction techniques, clipping noise is allowed to spread over the whole active passband, thus degrading the transmit signal quality similarly at all active subcarriers. However, since modern radio networks support frequency-multiplexing of users and services with highly different quality-of-service expectations, clipping noise from PAPR reduction should be distributed unequally over the corresponding physical resource blocks (PRBs). To facilitate this, we present an efficient PAPR reduction technique, where clipping noise can be flexibly controlled and filtered inside the transmitter passband, allowing to control the transmitted signal quality per PRB. Numerical results are provided in 5G New Radio (NR) mobile network context, demonstrating the flexibility and efficiency of the proposed method.Comment: Accepted for publication as a Correspondence in the IEEE Transactions on Vehicular Technology in March 2019. This is the revised version of original manuscript, and it is in press at the momen

    Peak to average power ratio reduction and error control in MIMO-OFDM HARQ System

    Get PDF
    Currently, multiple-input multiple-output orthogonal frequency division multiplexing (MIMOOFDM) systems underlie crucial wireless communication systems such as commercial 4G and 5G networks, tactical communication, and interoperable Public Safety communications. However, one drawback arising from OFDM modulation is its resulting high peak-to-average power ratio (PAPR). This problem increases with an increase in the number of transmit antennas. In this work, a new hybrid PAPR reduction technique is proposed for space-time block coding (STBC) MIMO-OFDM systems that combine the coding capabilities to PAPR reduction methods, while leveraging the new degree of freedom provided by the presence of multiple transmit chairs (MIMO). In the first part, we presented an extensive literature review of PAPR reduction techniques for OFDM and MIMO-OFDM systems. The work developed a PAPR reduction technique taxonomy, and analyzed the motivations for reducing the PAPR in current communication systems, emphasizing two important motivations such as power savings and coverage gain. In the tax onomy presented here, we include a new category, namely, hybrid techniques. Additionally, we drew a conclusion regarding the importance of hybrid PAPR reduction techniques. In the second part, we studied the effect of forward error correction (FEC) codes on the PAPR for the coded OFDM (COFDM) system. We simulated and compared the CCDF of the PAPR and its relationship with the autocorrelation of the COFDM signal before the inverse fast Fourier transform (IFFT) block. This allows to conclude on the main characteristics of the codes that generate high peaks in the COFDM signal, and therefore, the optimal parameters in order to reduce PAPR. We emphasize our study in FEC codes as linear block codes, and convolutional codes. Finally, we proposed a new hybrid PAPR reduction technique for an STBC MIMO-OFDM system, in which the convolutional code is optimized to avoid PAPR degradation, which also combines successive suboptimal cross-antenna rotation and inversion (SS-CARI) and iterative modified companding and filtering schemes. The new method permits to obtain a significant net gain for the system, i.e., considerable PAPR reduction, bit error rate (BER) gain as compared to the basic MIMO-OFDM system, low complexity, and reduced spectral splatter. The new hybrid technique was extensively evaluated by simulation, and the complementary cumulative distribution function (CCDF), the BER, and the power spectral density (PSD) were compared to the original STBC MIMO-OFDM signal
    • …
    corecore