14 research outputs found

    On PAPR Reduction of OFDM using Partial Transmit Sequence with Intelligent Optimization Algorithms

    Get PDF
    In recent time, the demand for multimedia data services over wireless links has grown up rapidly. Orthogonal Frequency Division Multiplexing (OFDM) forms the basis for all 3G and beyond wireless communication standards due to its efficient frequency utilization permitting near ideal data rate and ubiquitous coverage with high mobility. OFDM signals are prone to high peak-to-average-power ratio (PAPR). Unfortunately, the high PAPR inherent to OFDM signal envelopes occasionally drives high power amplifiers (HPAs) to operate in the nonlinear region of their characteristic leading out-of-band radiation, reduction in efficiency of communication system etc. A plethora of research has been devoted to reducing the performance degradation due to the PAPR problem inherent to OFDM systems. Advanced techniques such as partial transmit sequences (PTS) and selected mapping (SLM) have been considered most promising for PAPR reduction. Such techniques are seen to be efficient for distortion-less signal processing but suffer from computational complexity and often requires transmission of extra information in terms of several side information (SI) bits leading to loss in effective data rate. This thesis investigates the PAPR problem using Partial Transmit Sequence (PTS) scheme, where optimization is achieved with evolutionary bio-inspired metaheuristic stochastic algorithms. The phase factor optimization in PTS is used for PAPR reduction. At first, swarm intelligence based Firefly PTS (FF-PTS) algorithm is proposed which delivers improved PAPR performance with reduced searching complexity. Following this, Cuckoo Search based PTS (CS-PTS) technique is presented, which offers good PAPR performance in terms of solution quality and convergence speed. Lastly, Improved Harmony search based PTS (IHS-PTS) is introduced, which provides improved PAPR. The algorithm has simple structure with a very few parameters for larger PTS sub-blocks. The PAPR performance of the proposed technique with different parameters is also verified through extensive computer simulations. Furthermore, complexity analysis of algorithms demonstrates that the proposed schemes offer significant complexity reduction when compared to standard PAPR reduction techniques. Findings have been validated through extensive simulation tests

    Boosted PTS Method with Mu-Law Companding Techniques for PAPR Reduction in OFDM Systems

    Get PDF
    This paper proposes an enhanced PAPR reduction technique which combines an enhanced PTS method with Mu-Law companding. The enhanced PTS method improves performances in both the partitioning and phase rotation steps. Enhancement in partitioning is achieved through a judicious incorporation of AP-PTS scheme into the IP-PTS. As for phase rotation, an optimal set of rotation vectors is derived based on the correlation properties of candidate signals. The PAPR reduction of this enhanced PTS method is further improved by annexing Mu-Law companding at the end of the enhanced PTS. This application of Mu-Law characteristic in the time domain of OFDM signal significantly improves the PAPR reduction capability of the approach. Simulation results show that the PAPR performance of the enhanced PTS method with Mu-Law companding technique on various scenarios with different modulation schemes is better than that of the PRP-PTS. This approach can be considered as a very attractive candidate for achieving a significant reduction of PAPR, while maintaining a low computational complexity

    An Overview of PAPR Reduction Techniques for an MC-CDMA System

    Get PDF
    Abstract-MC-CDMA is the most promising technique for high bit rate and high capacity transmission in wireless communication. One of the challenging issues of MC-CDMA system is very high PAPR due to large number of sub-carriers which reduces the system efficiency. This paper describes the various PAPR reduction techniques for MC-CDMA system. Criterion for the selection of PAPR reduction technique and also the comparison between the reduction techniques has been discussed

    New methods of partial transmit sequence for reducing the high peak-to-average-power ratio with low complexity in the ofdm and f-ofdm systems

    Get PDF
    The orthogonal frequency division multiplexing system (OFDM) is one of the most important components for the multicarrier waveform design in the wireless communication standards. Consequently, the OFDM system has been adopted by many high-speed wireless standards. However, the high peak-to-average- power ratio (PAPR) is the main obstacle of the OFDM system in the real applications because of the non-linearity nature in the transmitter. Partial transmit sequence (PTS) is one of the effective PAPR reduction techniques that has been employed for reducing the PAPR value 3 dB; however, the high computational complexity is the main drawback of this technique. This thesis proposes novel methods and algorithms for reducing the high PAPR value with low computational complexity depending on the PTS technique. First, three novel subblocks partitioning schemes, Sine Shape partitioning scheme (SS-PTS), Subsets partitioning scheme (Sb-PTS), and Hybrid partitioning scheme (H-PTS) have been introduced for improving the PAPR reduction performance with low computational complexity in the frequency-domain of the PTS structure. Secondly, two novel algorithms, Grouping Complex iterations algorithm (G-C-PTS), and Gray Code Phase Factor algorithm (Gray-PF-PTS) have been developed to reduce the computational complexity for finding the optimum phase rotation factors in the time domain part of the PTS structure. Third, a new hybrid method that combines the Selective mapping and Cyclically Shifts Sequences (SLM-CSS-PTS) techniques in parallel has been proposed for improving the PAPR reduction performance and the computational complexity level. Based on the proposed methods, an improved PTS method that merges the best subblock partitioning scheme in the frequency domain and the best low-complexity algorithm in the time domain has been introduced to enhance the PAPR reduction performance better than the conventional PTS method with extremely low computational complexity level. The efficiency of the proposed methods is verified by comparing the predicted results with the existing modified PTS methods in the literature using Matlab software simulation and numerical calculation. The results that obtained using the proposed methods achieve a superior gain in the PAPR reduction performance compared with the conventional PTS technique. In addition, the number of complex addition and multiplication operations has been reduced compared with the conventional PTS method by about 54%, and 32% for the frequency domain schemes, 51% and 65% for the time domain algorithms, 18% and 42% for the combining method. Moreover, the improved PTS method which combines the best scheme in the frequency domain and the best algorithm in the time domain outperforms the conventional PTS method in terms of the PAPR reduction performance and the computational complexity level, where the number of complex addition and multiplication operation has been reduced by about 51% and 63%, respectively. Finally, the proposed methods and algorithms have been applied to the OFDM and Filtered-OFDM (F-OFDM) systems through Matlab software simulation, where F-OFDM refers to the waveform design candidate in the next generation technology (5G)

    Implementation of a Single IFFT Block based Partial Transmit Sequence Technique for PAPR Reduction in OFDM

    Get PDF
    The current trends in wireless industry like IEEE 802.11a/g/n, IEEE 802.16e are based on OFDM which is highly promising in terms of higher data rates & better immunity to frequency selective fading. However OFDM is limited by high PAPR. High PAPR causes nonlinear distortion in the signal & hence results in intercarrier interference & out-of-band radiation. To combat the effect of high PAPR several PAPR reduction techniques have been devised. All these techniques have to strike a tradeoff among computational complexity, PAPR reduction performance, BER performance & redundancy. PTS technique provides a very effective PAPR reduction with no limit on the maximum number of subcarriers. But the technique suffers from very high computational complexity. Hence authors have tried to modify the technique so that the complexity is reduced significantly without affecting PAPR reduction performance. This dissertation is extensively based on PTS & in this course limns a novel approach which offers better PAPR reduction & significantly reduces the algorithmic complexity with respect to the original technique. The multiple numbers of IFFT blocks has been replaced by a single block; the parallel processing has been replaced by serial processing. The complexities & PAPR reduction performance of the modified & the original techniques have been compared.Furthermore the proposed technique has been emulated in a memory & power constrained environment on C6713DSK with TMS320C6713 processor using real signal input. The emulation results have been analyzed & it has been observed that the emulated PAPR values are at par with simulated ones. To check the SER performance of the technique, the receiver has been simulated as well. The transceiver channel model has been simulated & the SER performance of OFDM system with Single IFFT block PTS has been compared with that of OFDM without any reduction technique. The results show that the PAPR reduction technique does not affect the SER performance

    Low Complex PAPR Reduction Schemes for OFDM Systems

    Get PDF
    In this thesis, three low-complex PAPR reduction schemes for OFDM systems are proposed. All the proposed schemes can be considered as modi ed versions of the conventional SLM scheme, which can signi cantly reduce high PAPR of OFDM signals with no distortion. In the rst proposed scheme, a new set of the candidate sequences is generated by partial phase weighting in the time domain and the combination of sub-blocks by applying IFFT properties. In the second scheme which is based on a combination of SLM and PTS, a simple phase optimization technique is introduced. The third scheme forms di erent 16-QAM signals from 2 QPSK signals. Also, the circular convolution part in TPPW-SLM, which is also a part of Class-III SLM, is applied

    Closed-form approximations of the peak-to-average power ratio distribution for multi-carrier modulation and their applications

    Get PDF
    International audienceThe theoretical analysis of the peak-to-average power ratio (PAPR) distribution for an orthogonal frequency division multiplexing (OFDM) system, depends on the particular waveform considered in the modulation system. In this paper, we generalize this analysis by considering the generalized waveforms for multi-carrier (GWMC) modulation system based on any family of modulation functions, and we derive a general approximate expression for the cumulative distribution function (CDF) of its PAPR, for both finite and infinite integration time. These equations allow us to directly find the expressions of the PAPR distribution for any particular functions and characterize the behaviour of the PAPR distribution associated with different transmission and observation scenarios. In addition to that, a new approach to formulating the PAPR reduction problem as an optimization problem, is presented in this study

    RF impairments in multiple antenna OFDM : influence and mitigation

    Get PDF

    PAPR Reduction Solutions for 5G and Beyond

    Get PDF
    The latest fifth generation (5G) wireless technology provides improved communication quality compared to earlier generations. The 5G New Radio (NR), specified by the 3rd Generation Partnership Project (3GPP), addresses the modern requirements of the wireless networks and targets improved communication quality in terms of for example peak data rates, latency and reliability. On the other hand, there are still various crucial issues that impact the implementation and energy-efficiency of 5G NR networks and their different deployments. The power-efficiency of transmitter power amplifiers (PAs) is one of these issues. The PA is an important unit of a communication system, which is responsible from amplifying the transmit signal towards the antenna. Reaching high PA power-efficiency is known to be difficult when the transmit waveform has a high peak-to-average power ratio (PAPR). The cyclic prefix (CP)-orthogonal frequencydivision multiplexing (OFDM) that is the main physical-layer waveform of 5G NR, suffers from such high PAPR challenge. There are generally many PAPR reduction methods proposed in the literature, however, many of these have either very notable computational complexity or impose substantial inband distortion. Moreover, 5G NR has new features that require redesigning the PAPR reduction methods. In line with these, the first contribution of this thesis is the novel frequencyselective PAPR reduction concept, where clipping noise is shaped in a frequencyselective manner over the active passband. This concept is in line with the 5G NR, where aggressive frequency-domain multiplexing is considered as an important feature. Utilizing the frequency-selective PAPR reduction enables the realization of the heterogeneous resource utilization within one passband. The second contribution of this thesis is the frequency-selective single-numerology (SN) and mixed-numerology (MN) PAPR reduction methods. The 5G NR targets utilizing different physical resource blocks (PRBs) and bandwidth parts (BWPs) within one passband flexibly. Yet, existing PAPR reduction methods do not exploit these features. Based on this, novel algorithms utilizing PRB and BWP level control of clipping noise are designed to meet error vector magnitude (EVM) limits of the modulations while reducing the PAPR. TheMNallocation has one critical challenge as inter numerology interference (INI) emerges after aggregation of subband signals. Proposed MN PAPR reduction algorithm overcomes this issue by cancelling INI within the PAPR reduction loop, which has not been considered earlier. The third contribution of this thesis is the proposal of two novel non-iterative PAPR reduction methods. First method utilizes the fast-convolution filteredOFDM (FC-F-OFDM) that has excellent spectral containment, and combines it with clipping. Moreover, clipping noise is also allocated to guard bands by filter passband extension (FPE) and clipping noise in out-of-band (OOB) regions is essentially filtered through FC filtering. The second method is the guard-tone reservation (GTR) which is applied to discrete Fourier transform-spread-OFDM (DFT-s-OFDM). Uniquely, GTR estimates the time domain peaks in data symbol domain before inverse fast Fourier transform (IFFT), and uses guard band tones for PAPR reduction. The fourth contribution of the thesis is the design of two novel machine learning (ML) algorithms that improve the drawbacks of frequency-selective PAPRreduction. The first ML algorithm, PAPRer, models the nonlinear relation between the PAPR target and the realized PAPR value. Then, it auto-tunes the optimal PAPR target and this way minimizes the realized PAPR. The second ML algorithm, one-shot clipping-and-filtering (OSCF), solves the complexity problem of iterative clipping and filtering (ICF)-like methods by generating proper approximated clipping noise signal after running only one iteration, leading to very efficient PAPR reduction. Finally, an over-arching contribution of this thesis is the experimental validation of the performance benefits of the proposed methods by considering realistic 5GNR uplink (UL) and downlink (DL) testbeds that include realistic PAs and associated hardware. It is very important to confirm the practical benefits of the proposed methods and, this is realized with the conducted experimental work
    corecore