589 research outputs found

    ์ €๋ณต์žก๋„ ํ›„๋ณด OFDM ์‹ ํ˜ธ ์ƒ์„ฑ์„ ์ด์šฉํ•œ ์ƒˆ๋กœ์šด PTS ๋ฐฉ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2014. 2. ๋…ธ์ข…์„ .This dissertation proposes several research results on the peak-to-average power ratio (PAPR) reduction schemes for the orthogonal frequency division multiplexing (OFDM) systems. The PAPR is the one of major drawback of OFDM system which causes signal distortion when OFDM signal passes through nonlinear high power amplifier (HPA). Various schemes have been proposed to reduce the PAPR of OFDM signals such as clipping, selected mapping (SLM), partial transmit sequence (PTS), active constellation extension (ACE), companding, and tone reservation (TR). Among them, PTS scheme can transmit an OFDM signal vector by generating many alternative OFDM signal vectors using the partitioned subblock signals and selecting the optimal OFDM signal vector with the minimum PAPR. However, the PTS scheme requires large computational complexity, because it needs many inverse fast Fourier transforms (IFFTs) of subblock signals and lots of alternative OFDM signal vectors are generated. In this dissertation, we concentrate on reducing the computational complexity of the PTS scheme. In the first part of this dissertation, we propose a new PTS scheme with low computational complexity using two search steps to find a subset of phase rotating vectors showing good PAPR reduction performance. In the first step, sequences with low correlation are used as phase rotating vectors for PTS scheme, which are called the initial phase vectors. Kasami sequence and quaternary sequence are used in this step as the initial phase vectors. In the second step, local search is performed based on the initial phase vectors to find additional phase rotating vectors which show good PAPR reduction performance. Numerical analysis shows that the proposed PTS scheme can achieve almost the same PAPR reduction performance as the conventional PTS scheme with much lower computational complexity than other low-complexity PTS schemes. In the second part of the dissertation, we propose another low-complexity PTS schemes using the dominant time-domain OFDM signal samples, which are only used to calculate PAPR of each alternative OFDM signal vector. In this PTS scheme, we propose efficient metrics to select the dominant time-domain samples. For further lowering the computational complexity, dominant time-domain samples are sorted in decreasing order by the proposed metric values and then the power of each sample is compared with the minimum PAPR of the previously examined alternative OFDM signal vectors. Numerical results confirm that the proposed PTS schemes using new metrics show large computational complexity reduction compared to other existing low-complexity PTS schemes without PAPR degradation. In the last part of the dissertation, for the reduced-complexity PTS scheme, a new selection method of the dominant time-domain samples is proposed by rotating the IFFTed signal samples to the area on which the IFFTed signal sample of the first subblock is located in the signal space. Moreover, the method of pre-exclusion of the phase rotating vectors using the time-domain sample rotation is proposed to reduce the number of alternative OFDM signal vectors. Further, three proposed PTS schemes are introduced to reduce the computational complexity by using simple OFDM signal rotation and pre-exclusion of the phase rotating vectors. Numerical analysis shows that the proposed PTS schemes achieve the same PAPR reduction performance as that of the conventional PTS scheme with the large computational complexity reduction.Docto

    An intelligent genetic algorithm for PAPR reduction in a multi-carrier CDMA wireless system

    Get PDF
    Abstractโ€” A novel intelligent genetic algorithm (GA), called Minimum Distance guided GA (MDGA) is proposed for peak-average-power ratio (PAPR) reduction based on partial transmit sequence (PTS) scheme in a synchronous Multi-Carrier Code Division Multiple Access (MC-CDMA) system. In contrast to traditional GA, our MDGA starts with a balanced ratio of exploration and exploitation which is maintained throughout the process. It introduces a novel replacement strategy which increases significantly the convergence rate and reduce dramatically computational complexity as compared to the conventional GA. The simulation results demonstrate that, if compared to the PAPR reduction schemes using exhaustive search and traditional GA, our scheme achieves 99.52% and 50+% reduction in computational complexity respectively

    A joint OFDM PAPR reduction and data decoding scheme with no SI estimation

    Get PDF
    The need for side information (SI) estimation poses a major challenge when selected mapping (SLM) is implemented to reduce peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) systems. Recent studies on pilot-assisted SI estimation procedures suggest that it is possible to determine the SI without the need for SI transmission. However, SI estimation adds to computational complexity and implementation challenges of practical SLM-OFDM receivers. To address these technical issues, this paper presents the use of a pilot-assisted cluster-based phase modulation and demodulation procedure called embedded coded modulation (ECM). The ECM technique uses a slightly modified SLM approach to reduce PAPR and to enable data recovery with no SI transmission and no SI estimation. In the presence of some non-linear amplifier distortion, it is shown that the ECM method achieves similar data decoding performance as conventional SLM-OFDM receiver that assumed a perfectly known SI and when the SI is estimated using a frequency-domain correlation approach. However, when the number of OFDM subcarriers is small and due to the clustering in ECM, the modified SLM produces a smaller PAPR reduction gain compared with conventional SLM
    • โ€ฆ
    corecore