1,842 research outputs found

    Thalassophilia and marine identity: Drivers of ‘thick’ marine citizenship

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordData availability: The research data supporting this publication are openly available from the UK Data Service at: https://reshare.ukdataservice.ac.uk/855922/Changing humanity's relationship with the ocean is identified as one of ten key challenges in the UN Decade of Ocean Science for Sustainable Development (2021–2030). Marine citizenship is one potential policy approach for reducing anthropogenic harms to the ocean and promoting ocean recovery, and there is a need to better understand marine citizenship motivating factors and their interactions. To contribute to a more holistic understanding, we approached this problem using an interdisciplinary, mixed methodology, which prioritised the voices and experiences of active marine citizens. An online survey and semi-structured interviews were conducted to examine factors spanning environmental psychology (values, environmental identity) and human geography (place attachment and dependency). Our data uncovered a unique marine place attachment, or thalassophilia, which is a novel conceptualisation of the human capacity to bond with a type of place beyond human settlements or defined localities. It is the product of strong emotional responses to the sensorial experience of the ocean and shared social or cultural understanding of ocean place identifications. A key driver of deeper marine citizenship is marine place dependency, and it is positively influence by stimulation and non-conformity values, environmental identity, and thalassophilia. We map significant motivating factors to identity process theory and describe a novel marine identity concept. We propose this as an operational mechanism of marine citizenship action, potentially filling the value- and knowledge-action gaps in the context of marine environmental action. This research provides a cornerstone in marine citizenship research by analysing together in one study a multitude of variables, which cross human-ocean relationships and experiences. The identification and characterisation of thalassophilia and marine identity process theory will enable research and practice to move forwards with a clearer framework of the role of the ocean as a place in environmental action.Economic and Social Research Council (ESRC

    Multidisciplinary perspectives on Artificial Intelligence and the law

    Get PDF
    This open access book presents an interdisciplinary, multi-authored, edited collection of chapters on Artificial Intelligence (‘AI’) and the Law. AI technology has come to play a central role in the modern data economy. Through a combination of increased computing power, the growing availability of data and the advancement of algorithms, AI has now become an umbrella term for some of the most transformational technological breakthroughs of this age. The importance of AI stems from both the opportunities that it offers and the challenges that it entails. While AI applications hold the promise of economic growth and efficiency gains, they also create significant risks and uncertainty. The potential and perils of AI have thus come to dominate modern discussions of technology and ethics – and although AI was initially allowed to largely develop without guidelines or rules, few would deny that the law is set to play a fundamental role in shaping the future of AI. As the debate over AI is far from over, the need for rigorous analysis has never been greater. This book thus brings together contributors from different fields and backgrounds to explore how the law might provide answers to some of the most pressing questions raised by AI. An outcome of the Católica Research Centre for the Future of Law and its interdisciplinary working group on Law and Artificial Intelligence, it includes contributions by leading scholars in the fields of technology, ethics and the law.info:eu-repo/semantics/publishedVersio

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Machine learning applications in search algorithms for gravitational waves from compact binary mergers

    Get PDF
    Gravitational waves from compact binary mergers are now routinely observed by Earth-bound detectors. These observations enable exciting new science, as they have opened a new window to the Universe. However, extracting gravitational-wave signals from the noisy detector data is a challenging problem. The most sensitive search algorithms for compact binary mergers use matched filtering, an algorithm that compares the data with a set of expected template signals. As detectors are upgraded and more sophisticated signal models become available, the number of required templates will increase, which can make some sources computationally prohibitive to search for. The computational cost is of particular concern when low-latency alerts should be issued to maximize the time for electromagnetic follow-up observations. One potential solution to reduce computational requirements that has started to be explored in the last decade is machine learning. However, different proposed deep learning searches target varying parameter spaces and use metrics that are not always comparable to existing literature. Consequently, a clear picture of the capabilities of machine learning searches has been sorely missing. In this thesis, we closely examine the sensitivity of various deep learning gravitational-wave search algorithms and introduce new methods to detect signals from binary black hole and binary neutron star mergers at previously untested statistical confidence levels. By using the sensitive distance as our core metric, we allow for a direct comparison of our algorithms to state-of-the-art search pipelines. As part of this thesis, we organized a global mock data challenge to create a benchmark for machine learning search algorithms targeting compact binaries. This way, the tools developed in this thesis are made available to the greater community by publishing them as open source software. Our studies show that, depending on the parameter space, deep learning gravitational-wave search algorithms are already competitive with current production search pipelines. We also find that strategies developed for traditional searches can be effectively adapted to their machine learning counterparts. In regions where matched filtering becomes computationally expensive, available deep learning algorithms are also limited in their capability. We find reduced sensitivity to long duration signals compared to the excellent results for short-duration binary black hole signals

    Spatio-Temporal Wildfire Prediction using Multi-Modal Data

    Full text link
    Due to severe societal and environmental impacts, wildfire prediction using multi-modal sensing data has become a highly sought-after data-analytical tool by various stakeholders (such as state governments and power utility companies) to achieve a more informed understanding of wildfire activities and plan preventive measures. A desirable algorithm should precisely predict fire risk and magnitude for a location in real time. In this paper, we develop a flexible spatio-temporal wildfire prediction framework using multi-modal time series data. We first predict the wildfire risk (the chance of a wildfire event) in real-time, considering the historical events using discrete mutually exciting point process models. Then we further develop a wildfire magnitude prediction set method based on the flexible distribution-free time-series conformal prediction (CP) approach. Theoretically, we prove a risk model parameter recovery guarantee, as well as coverage and set size guarantees for the CP sets. Through extensive real-data experiments with wildfire data in California, we demonstrate the effectiveness of our methods, as well as their flexibility and scalability in large regions

    Learning and Control of Dynamical Systems

    Get PDF
    Despite the remarkable success of machine learning in various domains in recent years, our understanding of its fundamental limitations remains incomplete. This knowledge gap poses a grand challenge when deploying machine learning methods in critical decision-making tasks, where incorrect decisions can have catastrophic consequences. To effectively utilize these learning-based methods in such contexts, it is crucial to explicitly characterize their performance. Over the years, significant research efforts have been dedicated to learning and control of dynamical systems where the underlying dynamics are unknown or only partially known a priori, and must be inferred from collected data. However, much of these classical results have focused on asymptotic guarantees, providing limited insights into the amount of data required to achieve desired control performance while satisfying operational constraints such as safety and stability, especially in the presence of statistical noise. In this thesis, we study the statistical complexity of learning and control of unknown dynamical systems. By utilizing recent advances in statistical learning theory, high-dimensional statistics, and control theoretic tools, we aim to establish a fundamental understanding of the number of samples required to achieve desired (i) accuracy in learning the unknown dynamics, (ii) performance in the control of the underlying system, and (iii) satisfaction of the operational constraints such as safety and stability. We provide finite-sample guarantees for these objectives and propose efficient learning and control algorithms that achieve the desired performance at these statistical limits in various dynamical systems. Our investigation covers a broad range of dynamical systems, starting from fully observable linear dynamical systems to partially observable linear dynamical systems, and ultimately, nonlinear systems. We deploy our learning and control algorithms in various adaptive control tasks in real-world control systems and demonstrate their strong empirical performance along with their learning, robustness, and stability guarantees. In particular, we implement one of our proposed methods, Fourier Adaptive Learning and Control (FALCON), on an experimental aerodynamic testbed under extreme turbulent flow dynamics in a wind tunnel. The results show that FALCON achieves state-of-the-art stabilization performance and consistently outperforms conventional and other learning-based methods by at least 37%, despite using 8 times less data. The superior performance of FALCON arises from its physically and theoretically accurate modeling of the underlying nonlinear turbulent dynamics, which yields rigorous finite-sample learning and performance guarantees. These findings underscore the importance of characterizing the statistical complexity of learning and control of unknown dynamical systems.</p

    A Comprehensive Survey of Artificial Intelligence Techniques for Talent Analytics

    Full text link
    In today's competitive and fast-evolving business environment, it is a critical time for organizations to rethink how to make talent-related decisions in a quantitative manner. Indeed, the recent development of Big Data and Artificial Intelligence (AI) techniques have revolutionized human resource management. The availability of large-scale talent and management-related data provides unparalleled opportunities for business leaders to comprehend organizational behaviors and gain tangible knowledge from a data science perspective, which in turn delivers intelligence for real-time decision-making and effective talent management at work for their organizations. In the last decade, talent analytics has emerged as a promising field in applied data science for human resource management, garnering significant attention from AI communities and inspiring numerous research efforts. To this end, we present an up-to-date and comprehensive survey on AI technologies used for talent analytics in the field of human resource management. Specifically, we first provide the background knowledge of talent analytics and categorize various pertinent data. Subsequently, we offer a comprehensive taxonomy of relevant research efforts, categorized based on three distinct application-driven scenarios: talent management, organization management, and labor market analysis. In conclusion, we summarize the open challenges and potential prospects for future research directions in the domain of AI-driven talent analytics.Comment: 30 pages, 15 figure

    Efficiency Separation between RL Methods: Model-Free, Model-Based and Goal-Conditioned

    Full text link
    We prove a fundamental limitation on the efficiency of a wide class of Reinforcement Learning (RL) algorithms. This limitation applies to model-free RL methods as well as a broad range of model-based methods, such as planning with tree search. Under an abstract definition of this class, we provide a family of RL problems for which these methods suffer a lower bound exponential in the horizon for their interactions with the environment to find an optimal behavior. However, there exists a method, not tailored to this specific family of problems, which can efficiently solve the problems in the family. In contrast, our limitation does not apply to several types of methods proposed in the literature, for instance, goal-conditioned methods or other algorithms that construct an inverse dynamics model

    On information captured by neural networks: connections with memorization and generalization

    Full text link
    Despite the popularity and success of deep learning, there is limited understanding of when, how, and why neural networks generalize to unseen examples. Since learning can be seen as extracting information from data, we formally study information captured by neural networks during training. Specifically, we start with viewing learning in presence of noisy labels from an information-theoretic perspective and derive a learning algorithm that limits label noise information in weights. We then define a notion of unique information that an individual sample provides to the training of a deep network, shedding some light on the behavior of neural networks on examples that are atypical, ambiguous, or belong to underrepresented subpopulations. We relate example informativeness to generalization by deriving nonvacuous generalization gap bounds. Finally, by studying knowledge distillation, we highlight the important role of data and label complexity in generalization. Overall, our findings contribute to a deeper understanding of the mechanisms underlying neural network generalization.Comment: PhD thesi
    • …
    corecore