1,968 research outputs found

    PAC-Bayes and Domain Adaptation

    Get PDF
    We provide two main contributions in PAC-Bayesian theory for domain adaptation where the objective is to learn, from a source distribution, a well-performing majority vote on a different, but related, target distribution. Firstly, we propose an improvement of the previous approach we proposed in Germain et al. (2013), which relies on a novel distribution pseudodistance based on a disagreement averaging, allowing us to derive a new tighter domain adaptation bound for the target risk. While this bound stands in the spirit of common domain adaptation works, we derive a second bound (introduced in Germain et al., 2016) that brings a new perspective on domain adaptation by deriving an upper bound on the target risk where the distributions' divergence-expressed as a ratio-controls the trade-off between a source error measure and the target voters' disagreement. We discuss and compare both results, from which we obtain PAC-Bayesian generalization bounds. Furthermore, from the PAC-Bayesian specialization to linear classifiers, we infer two learning algorithms, and we evaluate them on real data.Comment: Neurocomputing, Elsevier, 2019. arXiv admin note: substantial text overlap with arXiv:1503.0694

    A New PAC-Bayesian Perspective on Domain Adaptation

    Get PDF
    We study the issue of PAC-Bayesian domain adaptation: We want to learn, from a source domain, a majority vote model dedicated to a target one. Our theoretical contribution brings a new perspective by deriving an upper-bound on the target risk where the distributions' divergence---expressed as a ratio---controls the trade-off between a source error measure and the target voters' disagreement. Our bound suggests that one has to focus on regions where the source data is informative.From this result, we derive a PAC-Bayesian generalization bound, and specialize it to linear classifiers. Then, we infer a learning algorithmand perform experiments on real data.Comment: Published at ICML 201

    Domain adaptation of weighted majority votes via perturbed variation-based self-labeling

    Full text link
    In machine learning, the domain adaptation problem arrives when the test (target) and the train (source) data are generated from different distributions. A key applied issue is thus the design of algorithms able to generalize on a new distribution, for which we have no label information. We focus on learning classification models defined as a weighted majority vote over a set of real-val ued functions. In this context, Germain et al. (2013) have shown that a measure of disagreement between these functions is crucial to control. The core of this measure is a theoretical bound--the C-bound (Lacasse et al., 2007)--which involves the disagreement and leads to a well performing majority vote learning algorithm in usual non-adaptative supervised setting: MinCq. In this work, we propose a framework to extend MinCq to a domain adaptation scenario. This procedure takes advantage of the recent perturbed variation divergence between distributions proposed by Harel and Mannor (2012). Justified by a theoretical bound on the target risk of the vote, we provide to MinCq a target sample labeled thanks to a perturbed variation-based self-labeling focused on the regions where the source and target marginals appear similar. We also study the influence of our self-labeling, from which we deduce an original process for tuning the hyperparameters. Finally, our framework called PV-MinCq shows very promising results on a rotation and translation synthetic problem

    Domain Adaptation of Majority Votes via Perturbed Variation-based Label Transfer

    Full text link
    We tackle the PAC-Bayesian Domain Adaptation (DA) problem. This arrives when one desires to learn, from a source distribution, a good weighted majority vote (over a set of classifiers) on a different target distribution. In this context, the disagreement between classifiers is known crucial to control. In non-DA supervised setting, a theoretical bound - the C-bound - involves this disagreement and leads to a majority vote learning algorithm: MinCq. In this work, we extend MinCq to DA by taking advantage of an elegant divergence between distribution called the Perturbed Varation (PV). Firstly, justified by a new formulation of the C-bound, we provide to MinCq a target sample labeled thanks to a PV-based self-labeling focused on regions where the source and target marginal distributions are closer. Secondly, we propose an original process for tuning the hyperparameters. Our framework shows very promising results on a toy problem

    A review of domain adaptation without target labels

    Full text link
    Domain adaptation has become a prominent problem setting in machine learning and related fields. This review asks the question: how can a classifier learn from a source domain and generalize to a target domain? We present a categorization of approaches, divided into, what we refer to as, sample-based, feature-based and inference-based methods. Sample-based methods focus on weighting individual observations during training based on their importance to the target domain. Feature-based methods revolve around on mapping, projecting and representing features such that a source classifier performs well on the target domain and inference-based methods incorporate adaptation into the parameter estimation procedure, for instance through constraints on the optimization procedure. Additionally, we review a number of conditions that allow for formulating bounds on the cross-domain generalization error. Our categorization highlights recurring ideas and raises questions important to further research.Comment: 20 pages, 5 figure

    PAC-Bayesian Learning and Domain Adaptation

    Full text link
    In machine learning, Domain Adaptation (DA) arises when the distribution gen- erating the test (target) data differs from the one generating the learning (source) data. It is well known that DA is an hard task even under strong assumptions, among which the covariate-shift where the source and target distributions diverge only in their marginals, i.e. they have the same labeling function. Another popular approach is to consider an hypothesis class that moves closer the two distributions while implying a low-error for both tasks. This is a VC-dim approach that restricts the complexity of an hypothesis class in order to get good generalization. Instead, we propose a PAC-Bayesian approach that seeks for suitable weights to be given to each hypothesis in order to build a majority vote. We prove a new DA bound in the PAC-Bayesian context. This leads us to design the first DA-PAC-Bayesian algorithm based on the minimization of the proposed bound. Doing so, we seek for a \rho-weighted majority vote that takes into account a trade-off between three quantities. The first two quantities being, as usual in the PAC-Bayesian approach, (a) the complexity of the majority vote (measured by a Kullback-Leibler divergence) and (b) its empirical risk (measured by the \rho-average errors on the source sample). The third quantity is (c) the capacity of the majority vote to distinguish some structural difference between the source and target samples.Comment: https://sites.google.com/site/multitradeoffs2012

    An Improvement to the Domain Adaptation Bound in a PAC-Bayesian context

    Full text link
    This paper provides a theoretical analysis of domain adaptation based on the PAC-Bayesian theory. We propose an improvement of the previous domain adaptation bound obtained by Germain et al. in two ways. We first give another generalization bound tighter and easier to interpret. Moreover, we provide a new analysis of the constant term appearing in the bound that can be of high interest for developing new algorithmic solutions.Comment: NIPS 2014 Workshop on Transfer and Multi-task learning: Theory Meets Practice, Dec 2014, Montr{\'e}al, Canad
    • …
    corecore