926 research outputs found

    On Margins and Derandomisation in PAC-Bayes

    Get PDF
    International audienceWe give a general recipe for derandomising PAC-Bayesian bounds using margins, with the critical ingredient being that our randomised predictions concentrate around some value. The tools we develop traightforwardly lead to margin bounds for various classifiers, including linear prediction—a class that includes boosting and the support vector machine—single-hidden-layer neural networks with an unusual erf activation function, and deep ReLU networks. Further, we extend to partially-derandomised predictors where only some of the randomness is removed, letting us extend bounds to cases where the concentration properties of our predictors are otherwise poor

    A New PAC-Bayesian Perspective on Domain Adaptation

    Get PDF
    We study the issue of PAC-Bayesian domain adaptation: We want to learn, from a source domain, a majority vote model dedicated to a target one. Our theoretical contribution brings a new perspective by deriving an upper-bound on the target risk where the distributions' divergence---expressed as a ratio---controls the trade-off between a source error measure and the target voters' disagreement. Our bound suggests that one has to focus on regions where the source data is informative.From this result, we derive a PAC-Bayesian generalization bound, and specialize it to linear classifiers. Then, we infer a learning algorithmand perform experiments on real data.Comment: Published at ICML 201

    PAC-Bayesian Analysis of the Exploration-Exploitation Trade-off

    Full text link
    We develop a coherent framework for integrative simultaneous analysis of the exploration-exploitation and model order selection trade-offs. We improve over our preceding results on the same subject (Seldin et al., 2011) by combining PAC-Bayesian analysis with Bernstein-type inequality for martingales. Such a combination is also of independent interest for studies of multiple simultaneously evolving martingales.Comment: On-line Trading of Exploration and Exploitation 2 - ICML-2011 workshop. http://explo.cs.ucl.ac.uk/workshop

    PAC-Bayesian Theory Meets Bayesian Inference

    Get PDF
    We exhibit a strong link between frequentist PAC-Bayesian risk bounds and the Bayesian marginal likelihood. That is, for the negative log-likelihood loss function, we show that the minimization of PAC-Bayesian generalization risk bounds maximizes the Bayesian marginal likelihood. This provides an alternative explanation to the Bayesian Occam's razor criteria, under the assumption that the data is generated by an i.i.d distribution. Moreover, as the negative log-likelihood is an unbounded loss function, we motivate and propose a PAC-Bayesian theorem tailored for the sub-gamma loss family, and we show that our approach is sound on classical Bayesian linear regression tasks.Comment: Published at NIPS 2015 (http://papers.nips.cc/paper/6569-pac-bayesian-theory-meets-bayesian-inference

    PAC-Bayes Analysis of Multi-view Learning

    Get PDF
    This paper presents eight PAC-Bayes bounds to analyze the generalization performance of multi-view classifiers. These bounds adopt data dependent Gaussian priors which emphasize classifiers with high view agreements. The center of the prior for the first two bounds is the origin, while the center of the prior for the third and fourth bounds is given by a data dependent vector. An important technique to obtain these bounds is two derived logarithmic determinant inequalities whose difference lies in whether the dimensionality of data is involved. The centers of the fifth and sixth bounds are calculated on a separate subset of the training set. The last two bounds use unlabeled data to represent view agreements and are thus applicable to semi-supervised multi-view learning. We evaluate all the presented multi-view PAC-Bayes bounds on benchmark data and compare them with previous single-view PAC-Bayes bounds. The usefulness and performance of the multi-view bounds are discussed.Comment: 35 page

    Chromatic PAC-Bayes Bounds for Non-IID Data: Applications to Ranking and Stationary β\beta-Mixing Processes

    Full text link
    Pac-Bayes bounds are among the most accurate generalization bounds for classifiers learned from independently and identically distributed (IID) data, and it is particularly so for margin classifiers: there have been recent contributions showing how practical these bounds can be either to perform model selection (Ambroladze et al., 2007) or even to directly guide the learning of linear classifiers (Germain et al., 2009). However, there are many practical situations where the training data show some dependencies and where the traditional IID assumption does not hold. Stating generalization bounds for such frameworks is therefore of the utmost interest, both from theoretical and practical standpoints. In this work, we propose the first - to the best of our knowledge - Pac-Bayes generalization bounds for classifiers trained on data exhibiting interdependencies. The approach undertaken to establish our results is based on the decomposition of a so-called dependency graph that encodes the dependencies within the data, in sets of independent data, thanks to graph fractional covers. Our bounds are very general, since being able to find an upper bound on the fractional chromatic number of the dependency graph is sufficient to get new Pac-Bayes bounds for specific settings. We show how our results can be used to derive bounds for ranking statistics (such as Auc) and classifiers trained on data distributed according to a stationary {\ss}-mixing process. In the way, we show how our approach seemlessly allows us to deal with U-processes. As a side note, we also provide a Pac-Bayes generalization bound for classifiers learned on data from stationary φ\varphi-mixing distributions.Comment: Long version of the AISTATS 09 paper: http://jmlr.csail.mit.edu/proceedings/papers/v5/ralaivola09a/ralaivola09a.pd
    • …
    corecore