9,566 research outputs found

    Learning discrete Hidden Markov Models from state distribution vectors

    Get PDF
    Hidden Markov Models (HMMs) are probabilistic models that have been widely applied to a number of fields since their inception in the late 1960’s. Computational Biology, Image Processing, and Signal Processing, are but a few of the application areas of HMMs. In this dissertation, we develop several new efficient learning algorithms for learning HMM parameters. First, we propose a new polynomial-time algorithm for supervised learning of the parameters of a first order HMM from a state probability distribution (SD) oracle. The SD oracle provides the learner with the state distribution vector corresponding to a query string. We prove the correctness of the algorithm and establish the conditions under which it is guaranteed to construct a model that exactly matches the oracle’s target HMM. We also conduct a simulation experiment to test the viability of the algorithm. Furthermore, the SD oracle is proven to be necessary for polynomial-time learning in the sense that the consistency problem for HMMs, where a training set of state distribution vectors such as those provided by the SD oracle is used but without the ability to query on arbitrary strings, is NP-complete. Next, we define helpful distributions on an instance set of strings for which polynomial-time HMM learning from state distribution vectors is feasible in the absence of an SD oracle and propose a new PAC-learning algorithm under helpful distribution for HMM parameters. The PAC-learning algorithm ensures with high probability that HMM parameters can be learned from training examples without asking queries. Furthermore, we propose a hybrid learning algorithm for approximating HMM parameters from a dataset composed of strings and their corresponding state distribution vectors, and provide supporting experimental data, which indicates our hybrid algorithm produces more accurate approximations than the existing method

    A Survey of Quantum Learning Theory

    Get PDF
    This paper surveys quantum learning theory: the theoretical aspects of machine learning using quantum computers. We describe the main results known for three models of learning: exact learning from membership queries, and Probably Approximately Correct (PAC) and agnostic learning from classical or quantum examples.Comment: 26 pages LaTeX. v2: many small changes to improve the presentation. This version will appear as Complexity Theory Column in SIGACT News in June 2017. v3: fixed a small ambiguity in the definition of gamma(C) and updated a referenc

    Learning DNFs under product distributions via {\mu}-biased quantum Fourier sampling

    Full text link
    We show that DNF formulae can be quantum PAC-learned in polynomial time under product distributions using a quantum example oracle. The best classical algorithm (without access to membership queries) runs in superpolynomial time. Our result extends the work by Bshouty and Jackson (1998) that proved that DNF formulae are efficiently learnable under the uniform distribution using a quantum example oracle. Our proof is based on a new quantum algorithm that efficiently samples the coefficients of a {\mu}-biased Fourier transform.Comment: 17 pages; v3 based on journal version; minor corrections and clarification

    PAC-Bayesian Analysis of Martingales and Multiarmed Bandits

    Full text link
    We present two alternative ways to apply PAC-Bayesian analysis to sequences of dependent random variables. The first is based on a new lemma that enables to bound expectations of convex functions of certain dependent random variables by expectations of the same functions of independent Bernoulli random variables. This lemma provides an alternative tool to Hoeffding-Azuma inequality to bound concentration of martingale values. Our second approach is based on integration of Hoeffding-Azuma inequality with PAC-Bayesian analysis. We also introduce a way to apply PAC-Bayesian analysis in situation of limited feedback. We combine the new tools to derive PAC-Bayesian generalization and regret bounds for the multiarmed bandit problem. Although our regret bound is not yet as tight as state-of-the-art regret bounds based on other well-established techniques, our results significantly expand the range of potential applications of PAC-Bayesian analysis and introduce a new analysis tool to reinforcement learning and many other fields, where martingales and limited feedback are encountered
    • …
    corecore