6 research outputs found

    Efficient, noise-tolerant, and private learning via boosting

    Full text link
    We introduce a simple framework for designing private boosting algorithms. We give natural conditions under which these algorithms are differentially private, efficient, and noise-tolerant PAC learners. To demonstrate our framework, we use it to construct noise-tolerant and private PAC learners for large-margin halfspaces whose sample complexity does not depend on the dimension. We give two sample complexity bounds for our large-margin halfspace learner. One bound is based only on differential privacy, and uses this guarantee as an asset for ensuring generalization. This first bound illustrates a general methodology for obtaining PAC learners from privacy, which may be of independent interest. The second bound uses standard techniques from the theory of large-margin classification (the fat-shattering dimension) to match the best known sample complexity for differentially private learning of large-margin halfspaces, while additionally tolerating random label noise.https://arxiv.org/pdf/2002.01100.pd

    Agnostically Learning Halfspaces

    Get PDF
    We consider the problem of learning a halfspace in the agnostic framework of Kearns et al., where a learner is given access to a distribution on labelled examples but the labelling may be arbitrary. The learner's goal is to output a hypothesis which performs almost as well as the optimal halfspace with respect to future draws from this distribution. Although the agnostic learning framework does not explicitly deal with noise, it is closely related to learning in worst-case noise models such as malicious noise. We give the first polynomial-time algorithm for agnostically learning halfspaces with respect to several distributions, such as the uniform distribution over the nn-dimensional Boolean cube {0,1}^n or unit sphere in n-dimensional Euclidean space, as well as any log-concave distribution in n-dimensional Euclidean space. Given any constant additive factor eps>0, our algorithm runs in poly(n) time and constructs a hypothesis whose error rate is within an additive eps of the optimal halfspace. We also show this algorithm agnostically learns Boolean disjunctions in time roughly 2^{\sqrt{n}} with respect to any distribution; this is the first subexponential-time algorithm for this problem. Finally, we obtain a new algorithm for PAC learning halfspaces under the uniform distribution on the unit sphere which can tolerate the highest level of malicious noise of any algorithm to date. Our main tool is a polynomial regression algorithm which finds a polynomial that best fits a set of points with respect to a particular metric. We show that, in fact, this algorithm is an arbitrary-distribution generalization of the well known "low-degree" Fourier algorithm of Linial, Mansour, and Nisan and has excellent noise tolerance properties when minimizing with respect to the L_1 norm. We apply this algorithm in conjunction with a non-standard Fourier transform (which does not use the traditional parity basis) for learning halfspaces over the uniform distribution on the unit sphere; we believe this technique is of independent interest

    PAC Analogues of Perceptron and Winnow via Boosting the Margin

    No full text
    We describe a novel family of PAC model algorithms for learning linear threshold functions. The new algorithms work by boosting a simple weak learner and exhibit complexity bounds remarkably similar to those of known online algorithms such as Perceptron and Winnow, thus suggesting that these well-studied online algorithms in some sense correspond to instances of boosting. We show that the new algorithms can be viewed as natural PAC analogues of the online ¡-norm algorithms which have recently been studied by Grove, Littlestone, and Schuurmans [16] and Gentile and Littlestone [15]. As special cases of the algorithm, by taking ¡£¢¥ ¤ and ¡£¢¥ ¦ we obtain natural boostingbased PAC analogues of Perceptron and Winnow respectively. The ¡§¢¨ ¦ case of our algorithm can also be viewed as a generalization (with an improved sample complexity bound) of Jackson and Craven’s PAC-model boosting-based algorithm for learning “sparse perceptrons ” [20]. The analysis of the generalization error of the new algorithms relies on techniques from the theory of large margin classification.
    corecore